Open Access
Issue |
EPJ Web Conf.
Volume 315, 2024
International Workshop on Future Linear Colliders (LCWS2024)
|
|
---|---|---|
Article Number | 03010 | |
Number of page(s) | 10 | |
Section | Detector | |
DOI | https://doi.org/10.1051/epjconf/202431503010 | |
Published online | 18 December 2024 |
- The ILD Collaboration, International Large Detector: Interim Design Report (2020). 10.48550/arXiv.2003.01116 [Google Scholar]
- H. Aihara, P. Burrows, M. Oreglia, SiD Letter of Intent (2009). 10.48550/arXiv.0911.0006 [Google Scholar]
- P. Lebrun, CERN, eds., The CLIC Programme: Towards a Staged e + e− Linear Collider Exploring the Terascale ; CLIC Conceptual Design Report, Number 2012,5 in CERN (CERN, Geneva, 2012), ISBN 978-92-9083-377-2 [Google Scholar]
- N. Bacchetta, J.J. Blaising, E. Brondolin, M. Dam, D. Dannheim, K. Elsener, D. Hynds, P. Janot, A.M. Kolano, E. Leogrande et al., CLD – a detector concept for the fcc-ee (2019). 10.48550/arXiv.1911.12230 [Google Scholar]
- M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, S.H. Abidi, O.S. AbouZeid, N.L. Abraham, H. Abramowicz et al., Jet reconstruction and performance using particle flow with the ATLAS Detector, The European Physical Journal C 77, 466 (2017). 10.1140/epjc/s10052-017-5031-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- A. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl et al., Particle-flow reconstruction and global event description with the CMS detector, Journal of Instrumentation 12, P10003 (2017). 10.1088/1748-0221/12/10/P10003 [Google Scholar]
- M.A. Thomson, Particle flow calorimetry and the PandoraPFA algorithm, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 611, 25 (2009). 10.1016/j.nima.2009.09.009 [CrossRef] [Google Scholar]
- S. Farrell, P. Calafiura, M. Mudigonda, Prabhat, D. Anderson, J.R. Vlimant, S. Zheng, J. Bendavid, M. Spiropulu, G. Cerati et al., Novel deep learning methods for track reconstruction (2018). 10.48550/arXiv.1810.06111 [Google Scholar]
- H. Qu, L. Gouskos, Jet tagging via particle clouds, Physical Review D 101, 056019 (2020). 10.1103/PhysRevD.101.056019 [CrossRef] [Google Scholar]
- S. Thais, P. Calafiura, G. Chachamis, G. DeZoort, J. Duarte, S. Ganguly, M. Kagan, D. Murnane, M.S. Neubauer, K. Terao, Graph Neural Networks in Particle Physics: Implementations, Innovations, and Challenges (2022). 10.48550/arXiv.2203.12852 [Google Scholar]
- J. Duarte, J.R. Vlimant, Graph Neural Networks for Particle Tracking and Reconstruction, WORLD SCIENTIFIC pp. 387–436 (2022). 10.1142/9789811234033_0012 [Google Scholar]
- J. Pata, J. Duarte, J.R. Vlimant, M. Pierini, M. Spiropulu, MLPF: Efficient machinelearned particle-flow reconstruction using graph neural networks, The European Physical Journal C 81, 381 (2021). 10.1140/epjc/s10052-021-09158-w [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- F.A. Di Bello, S. Ganguly, E. Gross, M. Kado, M. Pitt, L. Santi, J. Shlomi, Towards a Computer Vision Particle Flow, The European Physical Journal C 81, 107 (2021), 2003.08863. 10.1140/epjc/s10052-021-08897-0 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need (2023). 10.48550/arXiv.1706.03762 [Google Scholar]
- H. Qu, C. Li, S. Qian, Particle Transformer for Jet Tagging (2024). 10.48550/arXiv.2202.03772 [Google Scholar]
- T. Finke, M. Krämer, A. Mück, J. Tönshoff, Learning the language of QCD jets with transformers, Journal of High Energy Physics 2023, 184 (2023). 10.1007/JHEP06(2023)184 [CrossRef] [Google Scholar]
- S. Qiu, S. Han, X. Ju, B. Nachman, H. Wang, A Holistic Approach to Predicting Top Quark Kinematic Properties with the Covariant Particle Transformer, Physical Review D 107, 114029 (2023), 2203.05687. 10.1103/PhysRevD.107.114029 [CrossRef] [Google Scholar]
- F.A. Di Bello, E. Dreyer, S. Ganguly, E. Gross, L. Heinrich, A. Ivina, M. Kado, N. Kakati, L. Santi, J. Shlomi et al., Reconstructing particles in jets using set transformer and hypergraph prediction networks, The European Physical Journal C 83, 596 (2023), 2212.01328. 10.1140/epjc/s10052-023-11677-7 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- L. Garren, I.G. Knowles, T. Sjöstrand, T. Trippe, Monte carlo particle numbering scheme, The European Physical Journal C 15, 205 (2000). 10.1007/BF02683426 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization (2017). 10.48550/arXiv.1412.6980 [Google Scholar]
- H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, H. Jégou, Going deeper with Image Transformers (2021). 10.48550/arXiv.2103.17239 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.