Open Access
Issue
EPJ Web Conf.
Volume 316, 2025
The 21st International Conference on Strangeness in Quark Matter (SQM 2024)
Article Number 01012
Number of page(s) 6
Section Introduction and Highlights
DOI https://doi.org/10.1051/epjconf/202531601012
Published online 27 January 2025
  1. S. Acharya et al. (ALICE), Measurements of chemical potentials in Pb-Pb collisions at sNN= 5.02 TeV (2023), 2311.13332. [Google Scholar]
  2. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Decoding the phase structure of QCD via particle production at high energy, Nature 561, 321 (2018), 1710.09425. 10.1038/s41586-018-0491-6 [CrossRef] [PubMed] [Google Scholar]
  3. A. Andronic, P. Braun-Munzinger, B. Friman, P.M. Lo, K. Redlich, J. Stachel, The thermal proton yield anomaly in Pb-Pb collisions at the LHC and its resolution, Phys. Lett. B 792, 304 (2019), 1808.03102. 10.1016/j.physletb.2019.03.052 [CrossRef] [Google Scholar]
  4. S. Acharya et al. (ALICE), Measurement of the production and elliptic flow of (anti)nuclei in Xe-Xe collisions at sNN = 5.44 TeV (2024), 2405.19826. [Google Scholar]
  5. A. Bazavov et al. (HotQCD), Chiral crossover in QCD at zero and non-zero chemical potentials, Phys. Lett. B 795, 15 (2019), 1812.08235. 10.1016/j.physletb.2019.05.013 [Google Scholar]
  6. F. Bellini, A.P. Kalweit, Testing production scenarios for (anti-)(hyper-)nuclei and exotica at energies available at the CERN Large Hadron Collider, Phys. Rev. C 99, 054905 (2019), 1807.05894. 10.1103/PhysRevC.99.054905 [CrossRef] [Google Scholar]
  7. R. Scheibl, U.W. Heinz, Coalescence and flow in ultrarelativistic heavy ion collisions, Phys. Rev. C59, 1585 (1999), nucl-th/9809092. 10.1103/PhysRevC.59.1585 [Google Scholar]
  8. M. Mahlein, L. Barioglio, F. Bellini, L. Fabbietti, C. Pinto, B. Singh, S. Tripathy, A realistic coalescence model for deuteron production, Eur. Phys. J. C 83, 804 (2023), 2302.12696. 10.1140/epjc/s10052-023-11972-3 [CrossRef] [Google Scholar]
  9. H. Sato, K. Yazaki, On the coalescence model for high energy nuclear reactions, Phys. Lett. B 98, 153 (1981). https://doi.org/10.1016/0370-2693(81)90976-X [CrossRef] [Google Scholar]
  10. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking, Phys. Rev. C 51, 38 (1995). 10.1103/PhysRevC.51.38 [CrossRef] [PubMed] [Google Scholar]
  11. S. Acharya et al. (ALICE), Search for a common baryon source in high-multiplicity pp collisions at the LHC, Phys. Lett. B 811, 135849 (2020), 2004.08018. 10.1016/j.physletb.2020.135849 [Google Scholar]
  12. G. Ropke, Light nuclei quasiparticle energy shift in hot and dense nuclear matter, Phys. Rev. C 79, 014002 (2009), 0810.4645. 10.1103/PhysRevC.79.014002 [CrossRef] [Google Scholar]
  13. S. Acharya et al. (ALICE), P-p, p-A and A-A correlations studied via femtoscopy in pp reactions at s = 7 TeV, Phys. Rev. C 99, 024001 (2019), 1805.12455. 10.1103/Phys-RevC.99.024001 [CrossRef] [Google Scholar]
  14. S. Acharya et al. (ALICE), First Observation of an Attractive Interaction between a Proton and a Cascade Baryon, Phys. Rev. Lett. 123, 112002 (2019), 1904.12198. 10.1103/PhysRevLett.123.112002 [Google Scholar]
  15. S. Acharya et al. (ALICE), Measurement of the Lifetime and A Separation Energy of HA3, Phys. Rev. Lett. 131, 102302 (2023), 2209.07360. 10.1103/Phys-RevLett.131.102302 [Google Scholar]
  16. F. Hildenbrand, H.W. Hammer, Three-Body Hypernuclei in Pionless Effective Field Theory, Phys. Rev. C 100, 034002 (2019), [Erratum: Phys.Rev.C 102, 039901 (2020)], 1904.05818. 10.1103/PhysRevC.100.034002 [CrossRef] [Google Scholar]
  17. V. Poulin, P. Salati, I. Cholis, M. Kamionkowski, J. Silk, Where do the AMS-02 antihelium events come from?, Phys. Rev. D 99, 023016 (2019), 1808.08961. 10.1103/Phys-RevD.99.023016 [CrossRef] [Google Scholar]
  18. Z. Citron et al., Report from Working Group 5: Future physics opportunities for high- density QCD at the LHC with heavy-ion and proton beams, CERN Yellow Rep. Monogr. 7, 1159 (2019), 1812.06772. 10.23731/CYRM-2019-007.1159 [Google Scholar]
  19. S. Acharya et al. (ALICE), Rapidity dependence of antideuteron coalescence in pp collisions at s = 13 TeV with ALICE (2024), 2407.10527. [Google Scholar]
  20. K. Blum, Rapidity dependence of nuclear coalescence: Impact on cosmic ray antinuclei, Phys. Rev. C 109, L031904 (2024), 2306.13165. 10.1103/PhysRevC.109.L031904 [CrossRef] [Google Scholar]
  21. L. Cerkcnyte et al., Reevaluation of the cosmic antideuteron flux from cosmic-ray interactions and from exotic sources, Phys. Rev. D 105, 083021 (2022), 2201.00925. 10.1103/PhysRevD.105.083021 [CrossRef] [Google Scholar]
  22. A.A. Alves, Jr. et al. (LHCb), The LHCb Detector at the LHC, JINST 3, S08005 (2008). 10.1088/1748-0221/3/08/S08005 [Google Scholar]
  23. New opportunities of heavy ion physics with CMS-MTD at the HL-LHC (2021), https://cds.cern.ch/record/2800541 [Google Scholar]
  24. Letter of intent for ALICE 3: A next-generation heavy-ion experiment at the LHC (2022), 2211.02491 [Google Scholar]
  25. R. Aaij et al. (LHCb), Helium identification with LHCb, JINST 19, P02010 (2024), 2310.05864. 10.1088/1748-0221/19/02/P02010 [Google Scholar]
  26. H. Jage, Observation of antihelium and antihypertriton in pp collisions with LHCb, PoS EPS-HEP2023, 254 (2024). 10.22323/1.449.0254 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.