Open Access
Issue
EPJ Web Conf.
Volume 319, 2025
RICAP-24, 9th Roma International Conference on Astroparticle Physics
Article Number 03001
Number of page(s) 8
Section Plenary Sessions Sept. 26th
DOI https://doi.org/10.1051/epjconf/202531903001
Published online 06 March 2025
  1. Y.B. Zel’dovich, I.D. Novikov, The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model, Soviet Ast. 10, 602 (1967). [Google Scholar]
  2. S. Hawking, Gravitationally collapsed objects of very low mass, MNRAS 152, 75 (1971). 10.1093/mnras/152.1.75 [CrossRef] [Google Scholar]
  3. B.J. Carr, S.W. Hawking, Black holes in the early Universe, MNRAS 168, 399 (1974). 10.1093/mnras/168.2.399 [NASA ADS] [CrossRef] [Google Scholar]
  4. G.F. Chapline, Cosmological effects of primordial black holes, Nature 253, 251 (1975). 10.1038/253251a0 [NASA ADS] [CrossRef] [Google Scholar]
  5. B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), 1602.03837. 10.1103/PhysRevLett.116.061102 [CrossRef] [PubMed] [Google Scholar]
  6. S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E.D. Kovetz, A. Raccanelli, A.G. Riess, Did LIGO Detect Dark Matter?, Phys. Rev. Lett. 116, 201301 (2016), 1603.00464. 10.1103/PhysRevLett.116.201301 [NASA ADS] [CrossRef] [Google Scholar]
  7. S. Clesse, J. García-Bellido, The clustering of massive Primordial Black Holes as Dark Matter: Measuring their mass distribution with advanced LIGO, Physics of the Dark Universe 15, 142 (2017), 1603.05234. 10.1016/j.dark.2016.10.002 [CrossRef] [Google Scholar]
  8. M. Sasaki, T. Suyama, T. Tanaka, S. Yokoyama, Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914, Phys. Rev. Lett. 117, 061101 (2016), 1603.08338. 10.1103/PhysRevLett.117.061101 [NASA ADS] [CrossRef] [Google Scholar]
  9. B.J. Carr, K. Kohri, Y. Sendouda, J. Yokoyama, Constraints on primordial black holes, Reports on Progress in Physics 84, 116902 (2021), 2002.12778. 10.1088/1361–6633/ac1e31 [CrossRef] [Google Scholar]
  10. A.M. Green, B.J. Kavanagh, Primordial black holes as a dark matter candidate, Journal of Physics G Nuclear Physics 48, 043001 (2021), 2007.10722. 10.1088/1361– 6471/abc534 [CrossRef] [Google Scholar]
  11. B.J. Carr, A.M. Green, The History of Primordial Black Holes, arXiv e-prints arXiv:2406.05736 (2024), 2406.05736. 10.48550/arXiv.2406.05736 [Google Scholar]
  12. B.C. Lacki, J.F. Beacom, Primordial Black Holes as Dark Matter: Almost All or Almost Nothing, ApJ 720, L67 (2010), 1003.3466. 10.1088/2041–8205/720/1/L67 [CrossRef] [Google Scholar]
  13. M. Boudaud, T. Lacroix, M. Stref, J. Lavalle, P. Salati, In-depth analysis of the clustering of dark matter particles around primordial black holes. Part I. Density profiles, J. Cosmology Astropart. Phys. 2021, 053 (2021), 2106.07480. 10.1088/14757516/2021/08/053 [CrossRef] [Google Scholar]
  14. Y.N. Eroshenko, Dark matter density spikes around primordial black holes, Astronomy Letters 42, 347 (2016), 1607.00612. 10.1134/S1063773716060013 [CrossRef] [Google Scholar]
  15. J. Adamek, C.T. Byrnes, M. Gosenca, S. Hotchkiss, WIMPs and stellar-mass primordial black holes are incompatible, Phys. Rev. D 100, 023506 (2019), 1901.08528. 10.1103/PhysRevD.100.023506 [CrossRef] [Google Scholar]
  16. K.J. Mack, J.P. Ostriker, M. Ricotti, Growth of Structure Seeded by Primordial Black Holes, ApJ 665, 1277 (2007), astro-ph/0608642. 10.1086/518998 [NASA ADS] [CrossRef] [Google Scholar]
  17. S.M. Boucenna, F. Kühnel, T. Ohlsson, L. Visinelli, Novel constraints on mixed darkmatter scenarios of primordial black holes and WIMPs, J. Cosmology Astropart. Phys. 2018, 003 (2018), 1712.06383. 10.1088/1475–7516/2018/07/003 [CrossRef] [Google Scholar]
  18. B. Carr, F. Kühnel, L. Visinelli, Black holes and WIMPs: all or nothing or something else, MNRAS 506, 3648 (2021), 2011.01930. 10.1093/mnras/stab1930 [CrossRef] [Google Scholar]
  19. S. Ando, K. Ishiwata, Constraints on decaying dark matter from the extragalactic gamma-ray background, J. Cosmology Astropart. Phys. 2015, 024 (2015), 1502.02007. 10.1088/1475–7516/2015/05/024 [CrossRef] [Google Scholar]
  20. E.U. Ginés, O. Mena, S.J. Witte, Revisiting constraints on WIMPs around primordial black holes, Phys. Rev. D 106, 063538 (2022), 2207.09481. 10.1103/Phys-RevD.106.063538 [CrossRef] [Google Scholar]
  21. P. Chanda, J. Scholtz, J. Unwin, Improved constraints on dark matter annihilations around primordial black holes, Journal of High Energy Physics 2024, 273 (2024), 2209.07541. 10.1007/JHEP07(2024)273 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.