Open Access
Issue
EPJ Web Conf.
Volume 320, 2025
20th International Conference on Calorimetry in Particle Physics (CALOR 2024)
Article Number 00052
Number of page(s) 4
DOI https://doi.org/10.1051/epjconf/202532000052
Published online 07 March 2025
  1. G. Ganis, C. Helsens, V. Völkl, Key4hep, a frame-work for future hep experiments and its use in fcc (2021), 2111.09874, https://arxiv.org/abs/2111.09874 [Google Scholar]
  2. M. Frank, F. Gaede, M. Petric, A. Sailer, Aidasoft-/dd4hep: v01-25-01 (2023), https://doi.org/10.5281/zenodo.7673417 [Google Scholar]
  3. R. Wigmans, 25 Years of Dual-Readout Calorimetry, Instruments 6, 36 (2022). 10.3390/instruments6030036 [CrossRef] [Google Scholar]
  4. M. Antonello (RD-FA), IDEA: A detector concept for future leptonic colliders, Nuovo Cim. C 43, 27 (2020). 10.1393/ncc/i2020-20027-2 [Google Scholar]
  5. M. Lucchini, W. Chung, S. Eno, Y. Lai, L. Lucchini, M. Nguyen, C. Tully, New perspectives on segmented crystal calorimeters for future colliders, Journal of Instrumentation 15, P11005 (2020). [CrossRef] [Google Scholar]
  6. M. Aleksa, F. Bedeschi, R. Ferrari, F. Sefkow, C.G. Tully, Calorimetry at FCC-ee, Eur. Phys. J. Plus 136, 1066 (2021), 2109.00391. 10.1140/epjp/s13360-021-02034-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  7. C. CMS, Tech. rep., CERN, Geneva (2019), https://cds.cern.ch/record/2667167 [Google Scholar]
  8. S. Agostinelli et al. (GEANT4), GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8 [CrossRef] [Google Scholar]
  9. https://gitlab.cern.ch/linuxsupport/rpms/HEP_OSlibs [Google Scholar]
  10. S.R. Qasim, J. Kieseler, Y. Iiyama, M. Pierini, Learning representations of irregular particle-detector geometry with distance-weighted graph networks, The European Physical Journal C 79 (2019). 10.1140/epjc/s10052-019-7113-9 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  11. J. Pata, J. Duarte, J.R. Vlimant, M. Pierini, M. Spiropulu, Mlpf: efficient machine-learned particle-flow reconstruction using graph neural networks, The European Physical Journal C 81 (2021). 10.1140/epjc/s10052-021-09158-w [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. H. Qu, L. Gouskos, Jet tagging via particle clouds, Physical Review D 101 (2020). 10.1103/phys-revd.101.056019 [Google Scholar]
  13. A. Sirunyan, A. Tumasyan, W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl et al., Particle-flow reconstruction and global event description with the cms detector, Journal of Instrumentation 12, P10003–P10003 (2017). 10.1088/1748-0221/12/10/p10003 [CrossRef] [Google Scholar]
  14. J. Ho, A. Jain, P. Abbeel, Denoising diffusion prob-abilistic models (2020), 2006.11239, https://arxiv.org/abs/2006.11239 [Google Scholar]
  15. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need (2023), 1706.03762, https://arxiv.org/abs/1706.03762 [Google Scholar]
  16. L. Zhang, A. Rao, M. Agrawala, Adding conditional control to text-to-image diffusion models (2023), 2302.05543, https://arxiv.org/abs/2302.05543 [Google Scholar]
  17. S. Ceravolo, F. Colao, C. Curatolo, E. Di Meco, E. Diociaiuti, D. Lucchesi, S. Martellotti, M. Moulson, D. Paesani, N. Pastrone et al., Crilin: A crystal calorimeter with lon-gitudinal information for a future muon collider, Nucl. Instrum. Meth. A 1047, 167817 (2023). https://doi.org/10.1016/j.nima.2022.167817 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.