Open Access
Issue
EPJ Web Conf.
Volume 322, 2025
7th International Workshop on Compound-Nuclear Reactions and Related Topics (CNR*24)
Article Number 04001
Number of page(s) 5
Section Nuclear Structure
DOI https://doi.org/10.1051/epjconf/202532204001
Published online 14 March 2025
  1. B.V. Carlson, J.E. Escher, M.S. Hussein, Theoretical descriptions of compound-nuclear reactions: open problems and challenges, Journal of Physics G: Nuclear and Particle Physics 41, 094003 (2014). 10.1088/0954-3899/41/9/094003 [CrossRef] [Google Scholar]
  2. H. Feshbach, A. Kerman, S. Koonin, The statistical theory of multi-step compound and direct reactions, Annals of Physics 125, 429 (1980). https://doi.org/10.1016/0003-4916(80)90140-2 [CrossRef] [Google Scholar]
  3. T. Tamura, T. Udagawa, H. Lenske, Multistep direct reaction analysis of continuum spectra in reactions induced by light ions, Phys. Rev. C 26, 379 (1982). 10.1103/PhysRevC.26.379 [CrossRef] [Google Scholar]
  4. H. Nishioka, H. Weidenmüller, S. Yoshida, Statistical theory of precompound reactions: The multistep direct process, Annals of Physics 183, 166 (1988). https://doi.org/10.1016/0003-4916(88)90250-3 [CrossRef] [Google Scholar]
  5. D. Agassi, H. Weidenmüller, G. Mantzouranis, The statistical theory of nuclear reactions for strongly overlapping resonances as a theory of transport phenomena, Physics Reports 22, 145 (1975). https://doi.org/10.1016/0370-1573(75)90028-9 [CrossRef] [Google Scholar]
  6. H. Nishioka, J. Verbaarschot, H. Weiden-müller, S. Yoshida, Statistical theory of pre-compound reactions: The multistep compound process, Annals of Physics 172, 67 (1986). https://doi.org/10.1016/0003-4916(86)90020-5 [CrossRef] [Google Scholar]
  7. J.J. Griffin, Statistical model of intermediate structure, Phys. Rev. Lett. 17, 478 (1966). 10.1103/PhysRevLett.17.478 [CrossRef] [Google Scholar]
  8. W. Hauser, H. Feshbach, The Inelastic Scattering of Neutrons, Phys. Rev. 87, 366 (1952). 10.1103/PhysRev.87.366 [CrossRef] [Google Scholar]
  9. J. Da Providência, Variational approach to the manybody problem, Nuclear Physics 61, 87 (1965). https://doi.org/10.1016/0029-5582(65)90937-5 [CrossRef] [Google Scholar]
  10. D. Gambacurta, M. Grasso, J. Engel, Subtraction method in the second random-phase approximation: First applications with a skyrme energy functional, Phys. Rev. C 92, 034303 (2015). 10.1103/PhysRevC.92.034303 [CrossRef] [Google Scholar]
  11. D. Gambacurta, M. Grasso, J. Engel, Gamow-Teller Strength in 48Ca and 78Ni with the Charge-Exchange Subtracted Second Random-Phase Approximation, Phys. Rev. Lett. 125, 212501 (2020). 10.1103/PhysRevLett.125.212501 [CrossRef] [PubMed] [Google Scholar]
  12. M.J. Yang, C.L. Bai, H. Sagawa, H.Q. Zhang, Effects of the skyrme tensor force on 0+, 2+, and 3− states in 16O and 40Ca nuclei within the second random-phase approximation, Phys. Rev. C 103, 054308 (2021). 10.1103/PhysRevC.103.054308 [CrossRef] [Google Scholar]
  13. D. Gambacurta, M. Grasso, Quenching of Gamow-Teller strengths and two-particle–two-hole configurations, Phys. Rev. C 105, 014321 (2022). 10.1103/PhysRevC.105.014321 [CrossRef] [Google Scholar]
  14. M.J. Yang, H. Sagawa, C.L. Bai, H.Q. Zhang, Effects of two-particle–two-hole configurations and tensor force on β decay of magic nuclei, Phys. Rev. C 107, 014325 (2023). 10.1103/PhysRevC.107.014325 [CrossRef] [Google Scholar]
  15. V.V. Severyukhin, A. P. ad Voronov, N. Van Giai, Effects of phonon-phonon coupling on low-lying states in neutron-rich sn isotopes, The European Physical Journal A - Hadrons and Nuclei 22, 397 (2004). 10.1140/epja/i2004-10048-2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. D. Gambacurta, F. Catara, M. Grasso, M. Sambataro, M.V. Andrés, E.G. Lanza, Nuclear excitations as coupled one and two random-phaseapproximation modes, Phys. Rev. C 93, 024309 (2016). 10.1103/PhysRevC.93.024309 [CrossRef] [Google Scholar]
  17. N.N. Arsenyev, A.P. Severyukhin, Isoscalar giant monopole resonance in 40,48ca, Journal of Physics: Conference Series 2586, 012047 (2023). 10.1088/1742-6596/2586/1/012047 [CrossRef] [Google Scholar]
  18. F. Minato, T. Naito, O. Iwamoto, Nuclear many-body effects on particle emission following muon capture on 28Si and 40Ca, Phys. Rev. C 107, 054314 (2023). 10.1103/PhysRevC.107.054314 [CrossRef] [Google Scholar]
  19. M. Lifshitz, P. Singer, Nuclear excitation function and particle emission from complex nuclei following muon capture, Phys. Rev. C 22, 2135 (1980). 10.1103/PhysRevC.22.2135 [CrossRef] [Google Scholar]
  20. P. Papakonstantinou, R. Roth, Large-scale second random-phase approximation calculations with finite-range interactions, Phys. Rev. C 81, 024317 (2010). 10.1103/PhysRevC.81.024317 [CrossRef] [Google Scholar]
  21. J. Bartel, P. Quentin, M. Brack, C. Guet, H.B. Håkansson, Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force, Nuclear Physics A 386, 79 (1982). https://doi.org/10.1016/0375-9474(82)90403-1 [CrossRef] [Google Scholar]
  22. V.I. Tselyaev, Quasiparticle time blocking approximation within the framework of generalized green function formalism, Phys. Rev. C 75, 024306 (2007). 10.1103/PhysRevC.75.024306 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.