Open Access
Issue
EPJ Web Conf.
Volume 322, 2025
7th International Workshop on Compound-Nuclear Reactions and Related Topics (CNR*24)
Article Number 06001
Number of page(s) 6
Section Nuclear Level Densities and Photon Strength Functions
DOI https://doi.org/10.1051/epjconf/202532206001
Published online 14 March 2025
  1. R. Capote et al., RIPL – Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations, Nucl. Data Sheets 110, 3107 (2009) and references therein, http://www-nds.iaea.org/RIPL-3. https://doi.org/10.1016/j.nds.2009.10.004 [CrossRef] [Google Scholar]
  2. H.A. Bethe, An Attempt to Calculate the Number of Energy Levels of a Heavy Nucleus, Phys. Rev. 50, 332 (1936). https://doi.org/10.1103/PhysRev.50.332 [CrossRef] [Google Scholar]
  3. A. Gilbert and A. G. W. Cameron, A composite nuclear-level density formula with shell corrections, Can. J. Phys. 43, 1446 (1965). https://doi.org/10.1139/ p65-139 [CrossRef] [Google Scholar]
  4. G. Hansen and A.S. Jensen, Energy dependence of the rotational enhancement factor in the level density, Nucl. Phys. A 406, 236 (1983). https://doi.org/10.1016/ 0375-9474(83)90459-1 [CrossRef] [Google Scholar]
  5. R. Sen’kov and V. Zelevinsky, Nuclear level density: Shell-model approach, Phys. Rev. C 93, 064304 (2016). https://doi.org/10.1103/PhysRevC.93.064304 [CrossRef] [Google Scholar]
  6. W. E. Ormand and B. A. Brown, Microscopic calculations of nuclear level densities with the Lanczos method, Phys. Rev. C 102, 014315 (2020). https://doi. org/10.1103/PhysRevC.102.014315 [CrossRef] [Google Scholar]
  7. G.H. Lang et al., Monte Carlo evaluation of path integrals for the nuclear shell model, Phys. Rev. C 48, 1518 (1993). https://doi.org/10.1103/PhysRevC.48.1518 [CrossRef] [PubMed] [Google Scholar]
  8. S.E. Koonin et al., Shell model Monte Carlo methods, Phys. Rep. 278, 2 (1997). https://doi.org/10.1016/ S0370-1573(96)00017-8 [CrossRef] [Google Scholar]
  9. Y. Alhassid, Quantum Monte Carlo Methods for Nuclei at Finite Temperature, Int. J. Mod. Phys. B 15, 1447 (2001). https://doi.org/10.1142/S0217979201005945 [CrossRef] [Google Scholar]
  10. Y. Alhassid, Auxiliary-field Quantum Monte Carlo Methods, Nuclei in Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling: A Symmetry-Guided Perspective, ed. by K.D. Launey (World Scientific, Singapore, 2017), pp. 267–298. https://doi.org/10.1142/9789813146051_0009 [Google Scholar]
  11. Y. Alhassid, private communication. [Google Scholar]
  12. C. Özen et al., Crossover from Vibrational to Rotational Collectivity in Heavy Nuclei in the Shell-Model Monte Carlo Approach, Phys. Rev. Lett. 110, 042502 (2013). https://doi.org/10.1103/PhysRevLett. [CrossRef] [PubMed] [Google Scholar]
  13. N. Shimizu et al., Stochastic estimation of nuclear level density in the nuclear shell model: An application to parity-dependent level density in 58Ni, Phys. Lett. B 753, 13 (2016). https://doi.org/10.1016/j.physletb.2015.12.005 [CrossRef] [Google Scholar]
  14. P. Demetriou and S. Goriely, Microscopic nuclear level densities for practical applications, Nuc. Phys. A 695, 95 (2001). https://doi.org/10.1016/ S0375-9474(01)01095-8 [CrossRef] [Google Scholar]
  15. S. Hilaire and S. Goriely, Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications, Nuc. Phys. A 779, 63 (2006). https://doi.org/10.1016/j.nuclphysa.2006.08.014 [CrossRef] [Google Scholar]
  16. S. Goriely et al., Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method, Phys. Rev. C 78, 064307 (2008). https://doi.org/10.1103/PhysRevC.78.064307 [NASA ADS] [CrossRef] [Google Scholar]
  17. M. Sin et al., Neutron-induced fission cross section on actinides using microscopic fission energy surfaces, Proceedings of the International Conference on Nuclear Data for Science and Technology, 22–27 April 2007, Nice, France, edited by F. Gunsing, E. Bauge, R. Jacqmin, S. Leray, and O. Bersillon (EDP Sciences, Les Ulis, France, 2008), p. 313, https://doi.org/10.1051/ ndata:07370 [Google Scholar]
  18. S. Hilaire et al., Temperature-dependent combinatorial level densities with the D1M Gogny force, Phys. Rev. C 86, 064317 (2010). https://doi.org/10.1103/ PhysRevC.86.064317 [Google Scholar]
  19. S. Goriely et al., First Gogny-Hartree-Fock-Bogoliubov Nuclear Mass Model, Phys. Rev. Lett. 102, 242501, (2009). https://doi.org/10.1103/PhysRevLett.102.242501 [CrossRef] [PubMed] [Google Scholar]
  20. J.-P. Delaroche et al., Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction, Phys. Rev. C 81, 014303 (2010). https://doi.org/10.1103/PhysRevC.81.014303 [CrossRef] [Google Scholar]
  21. A. J. Koning et al., TALYS: modeling of nuclear reactions, Eur. Phys. J. A 59, 131 (2023). https://doi.org/10.1140/epja/s10050-023-01034-3 [CrossRef] [Google Scholar]
  22. S. Goriely et al., Improved microscopic nuclear level densities within the triaxial HFB plus combinatorial method, Phys. Rev. C (2025) to be submitted [Google Scholar]
  23. S. Hilaire et al., A new approach to nuclear level densities: The QRPA plus boson expansion, Phys. Lett. B 843, 137989, (2023). https://doi.org/10.1016/j. physletb.2023.137989 [CrossRef] [Google Scholar]
  24. S. Goriely et al., The Gogny-HFB+QRPA dipole strength function and its application to radiative neutron capture cross section, EPJ Web of Conferences 178, 04001 (2018). https://doi.org/10.1051/epjconf/ 201817804001 [CrossRef] [EDP Sciences] [Google Scholar]
  25. S. Goriely et al., Reference database for photon strength functions, Eur. Phys. J. A 55, 172 (2019). https://doi.org/10.1140/epja/i2019-12840-1 [CrossRef] [Google Scholar]
  26. S. Hilaire et al., Combinatorial nuclear level densities based on the Gogny nucleon-nucleon effective interaction, Eur. Phys. J. A 12, 169 (2001). https://doi.org/10. 1007/s100500170025 [CrossRef] [Google Scholar]
  27. Oslo database : Level densities and gammaray strength functions, https://www.mn.uio.no/ fysikk/english/research/about/infrastructure/ocl/ nuclear-physics-research/compilation/ [Google Scholar]
  28. S. Goriely et al., Comprehensive test of nuclear level density models, Phys. Rev. C 106, 044315 (2022). https://doi.org/10.1103/PhysRevC.106.044315 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.