Open Access
Issue |
EPJ Web Conf.
Volume 322, 2025
7th International Workshop on Compound-Nuclear Reactions and Related Topics (CNR*24)
|
|
---|---|---|
Article Number | 06004 | |
Number of page(s) | 4 | |
Section | Nuclear Level Densities and Photon Strength Functions | |
DOI | https://doi.org/10.1051/epjconf/202532206004 | |
Published online | 14 March 2025 |
- M. Arnould, S. Goriely, The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status, Phys. Rep. 384, 1 (2003). https://doi.org/10.1016/S0370-1573(03)00242-4 [CrossRef] [Google Scholar]
- M. Burbidge, G. Burbidge, W. A. Fowler, and F. Hoyle, Synthesis of the elements in stars, Rev. Mod. Phys. 29, 547 (1957). https://doi.org/10.1103/RevModPhys.29.547 [CrossRef] [Google Scholar]
- T. Rauscher, Sensitivity of astrophysical reaction rates to nuclear uncertainties, Astrophys. J. Suppl. 201, 26 (2012). https://doi.org/10.1088/00670049/201/2/26 [CrossRef] [Google Scholar]
- T. Rauscher, Photonuclear Reactions in Astrophysics, Nucl. Phys. News 28, 12 (2018). https://doi.org/10.1080/10619127.2018.1463016 [CrossRef] [Google Scholar]
- https://tunl.duke.edu/research/our-facilities [Google Scholar]
- T. Rauscher, Branching in the γ process path revisited, Phys. Rev. C 73, 015804 (2006). https://doi.org/10.1103/PhysRevC.73.015804 [CrossRef] [Google Scholar]
- T. Rauscher and F.-K. Thielemann, Astrophysical reaction rates from statistical model calculations, At. Data Nucl. Data Tables 75, 1 (2000). https://doi.org/10.1006/adnd.2000.0834 [CrossRef] [Google Scholar]
- J. Kopecky, M. Uhl, Test of gamma-ray strength functions in nuclear reaction model calculations, Phys Rev. C 41, 1941 (1990). https://doi.org/10.1103/PhysRevC.41.1941 [CrossRef] [PubMed] [Google Scholar]
- M. Martini, S. Peru, S. Hillaire, S. Goriely, and F. Lechaftois, Large-scale deformed quasiparticle random-phase approximation calculations of the γ-ray strength function using the Gogny force, Phys. Rev. C 94, 014304 (2016). https://doi.org/10.1103/PhysRevC.94.014304 [CrossRef] [Google Scholar]
- S. Goriely, S. Hilaire, S. Peru, M. Martini, I. Deloncle, and F. Lechaftois, Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions of the γ1 strength function and its impact on radiative neutron capture cross section, Phys. Rev. C 94, 044306 (2016). https://doi.org/10.1103/PhysRevC.94.044306 [CrossRef] [Google Scholar]
- S. Goriely, S. Hilaire, S. Peru, and K. Sieja, Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section, Phys. Rev. C 98, 014327 (2018). https://doi.org/10.1103/PhysRevC.98.014327 [CrossRef] [Google Scholar]
- S. Peru and H. Goutte, Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force, Phys. Rev. C 77, 044313 (2008). https://doi.org/10.1103/PhysRevC.77.044313 [CrossRef] [Google Scholar]
- K. Nomoto, F.-K. Thielemann, K. Yokoi, Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae, Astrophys. J. 286, 644 (1984). https://doi.org/10.1086/162639 [CrossRef] [Google Scholar]
- A. Zilges, D. L. Balabanski, J. Isaak, and N. Pietralla, Photonuclear reactions—From basic research to applications, Prog. Part. Nucl. Phys. 122, 103903 (2022). https://doi.org/10.1016/j.ppnp.2021.103903 [CrossRef] [Google Scholar]
- A. Koning, S. Hilaire, and S. Goriely, TALYS: modeling of nuclear reactions, Eur. Phys. J. A. 59, 131 (2023). https://doi.org/10.1140/epja/s10050-023-01034-3 [CrossRef] [Google Scholar]
- S. Goriely and V. Plujko, Simple empirical E1 and M1 strength functions for practical applications, Phys. Rev. C 99, 014303 (2019). https://doi.org/10.1103/PhysRevC.99.014303 [NASA ADS] [CrossRef] [Google Scholar]
- C. Travaglio, F. K. Röpke, R. Gallino, and W. Hillebrandt, Type Ia supernovae as sites of the p-process: two-dimensional models coupled to nucleosynthesis, Astrophys. J. 739, 93 (2011). https://doi.org/10.1088/0004-637X/739/2/93 [CrossRef] [Google Scholar]
- C. Travaglio, R. Gallino, T. Rauscher, F. K. Röpke, and W. Hillebrandt, Testing the role of Sne Ia for galactic chemical evolution of p-nuclei with two-dimensional models and with s-process seeds at different metallicities, Astrophys. J. 799, 54 (2015). https://doi.org/10.1088/0004-637X/799/1/54 [CrossRef] [Google Scholar]
- A. Banu, E. G. Meekins, J. A. Silano, H. J. Karwowski, and S. Goriely, Photoneutron cross section measurements on 94Mo and 90Zr relevant to the p-process nucleosynthesis, Phys. Rev. C 99, 025802 (2019). https://doi.org/10.1103/PhysRevC.99.025802 [CrossRef] [Google Scholar]
- H. Utsunomiya et al., Photoneutron cross sections for Mo isotopes: A step forward toward a unified understanding of (γ,n) and (n,γ) reactions, Phys. Rev. C 88, 015805 (2013). https://doi.org/10.1103/PhysRevC.88.015805 [CrossRef] [Google Scholar]
- H. Beil et al., A study of the photoneutron contribution to the giant dipole resonance in double even Mo isotopes, Nucl. Phys. A 227, 427 (1974). https://doi.org/10.1016/0375-9474(74)90769-6 [CrossRef] [Google Scholar]
- A. Morozov, L. M. S. Margato, A. Blanco, and D. Galaviz, Concept of a fast neutron detector based on 10B-RPCs, JINST. 17, P02016 (2022). https://doi.org/10.1088/1748-0221/17/02/P02016 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.