Open Access
Issue |
EPJ Web Conf.
Volume 323, 2025
22nd International Metrology Congress (CIM2025)
|
|
---|---|---|
Article Number | 05001 | |
Number of page(s) | 6 | |
Section | Machine Learning | |
DOI | https://doi.org/10.1051/epjconf/202532305001 | |
Published online | 07 April 2025 |
- D. Babić, T. Burghardt, D. B.-I. J. for T. and, and undefined 2015, “Application and characteristics of waterborne road marking paint,” ijtte.comD Babić, TE Burghardt, D BabićInternational Journal for Traffic and Transport Engineering, 2015•ijtte.com, vol. 5, no. 2, pp. 150–169, 2015, doi: 10.7708/ijtte.2015.5(2).06. [Google Scholar]
- R. Maxime, B. Laurent, D. D.-I. J. of, and undefined 2021, “Em approach for weibull analysis in a strongly censored data contextapplication to road markings,” ijpe-online.comR Maxime, B Laurent, D DimitriInternational Journal of Performability Engineering, 2021•ijpe-online.com, Accessed: Feb. 26, 2025. [Online]. Available: https://www.ijpeonline.com/EN/Y2021/V17/I4/333 [Google Scholar]
- P. Charbonnier, F. Diebolt, … Y. G.-… of C. on, and undefined 1997, “Road markings recognition using image processing,” ieeexplore.ieee.orgP Charbonnier, F Diebolt, Y Guillard, F PeyretProceedings of Conference on Intelligent Transportation Systems, 1997•ieeexplore.ieee.org, Accessed: Feb. 26, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/660595/ [Google Scholar]
- A. Bar Hillel et al., “Recent progress in road and lane detection: a survey”, doi: 10.1007/s00138-011-0404-2. [Google Scholar]
- Y. Zhang, Z. Lu, X. Zhang, … J. X.-I. T. on, and undefined 2021, “Deep learning in lane marking detection: A survey,” ieeexplore.ieee.orgY Zhang, Z Lu, X Zhang, JH Xue, Q LiaoIEEE Transactions on Intelligent Transportation Systems, 2021•ieeexplore.ieee.org, Accessed: Jun. 18, 2024. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9398517/ [Google Scholar]
- Dumont Éric, “Évaluation du degré d’usure des marquages routiers par traitement d’images,” Dec. 2001. [Google Scholar]
- J. Wu, W. Liu, Y. M. Sensors, and undefined 2024, “Street View Image-Based Road Marking Inspection System Using Computer Vision and Deep Learning Techniques,” mdpi.comJ Wu, W Liu, Y MaruyamaSensors, 2024•mdpi.com, Accessed: Feb. 19, 2025. [Online]. Available: https://www.mdpi.com/1424-8220/24/23/7724 [Google Scholar]
- N. Hautiére, R. Labayrade, and D. Aubert, “Real-time disparity contrast combination for onboard estimation of the visibility distance,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 2, pp. 201–211, Jun. 2006, doi: 10.1109/TITS.2006.874682. [Google Scholar]
- O. Jayasinghe, … S. H.-P. of the, and undefined 2022, “Ceymo: See more on roads-a novel benchmark dataset for road marking detection,” openaccess.thecvf.com, Accessed: Aug. 02, 2024. [Online]. Available: http://openaccess.thecvf.com/content/WACV2022/html/Jayasinghe_CeyMo_See_More_on_Roads_-_A_Novel_Benchmark_Dataset_WACV_2022_paper.html [Google Scholar]
- “ISO 5725-1:2023 Exactitude (justesse et fidélité) des résultats et méthodes de mesure — Partie 1: Principes généraux et définitions.” Accessed: Feb. 20, 2025. [Online]. Available: https://www.iso.org/fr/standard/69418.html [Google Scholar]
- J. Redmon, S. Divvala, R. G.-… and pattern recognition, and undefined 2016, “You only look once: Unified, real-time object detection,” cv-foundation.org, Accessed: Aug. 02, 2024. [Online]. Available: https://www.cvfoundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html [Google Scholar]
- C. Dewi, R. C. Chen, Y. C. Zhuang, X. Jiang, and H. Yu, “Recognizing Road Surface Traffic Signs Based on Yolo Models Considering Image Flips,” Big Data and Cognitive Computing 2023, Vol. 7, Page 54, vol. 7, no. 1, p. 54, Mar. 2023, doi: 10.3390/BDCC7010054. [Google Scholar]
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–241, 2015, doi: 10.1007/978-3-319-24574-4_28. [Google Scholar]
- M. Ghafoorian, C. Nugteren, N. Baka, O. Booij, and M. Hofmann, “EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection,” 2018. [Google Scholar]
- X. Pan, J. Shi, P. Luo, X. Wang, X. T.-P. of the AAAI, and undefined 2018, “Spatial as deep: Spatial cnn for traffic scene understanding,” ojs.aaai.orgX Pan, J Shi, P Luo, X Wang, X TangProceedings of the AAAI conference on artificial intelligence, 2018•ojs.aaai.org, Accessed: Jul. 30, 2024. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/12301 [Google Scholar]
- R. Mori, … K. K.-S. 2004 A., and undefined 2004, “Hough-based robust lane boundary detection for the omni-directional camera,” ieeexplore.ieee.orgR Mori, K Kobayashi, K WatanabeSICE 2004 Annual Conference, 2004•ieeexplore.ieee.org, Accessed: Jan. 23, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1491793/ [Google Scholar]
- A. Borkar, M. Hayes, M. T. Smith, and S. Pankanti, “A layered approach to robust lane detection at night,” 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, CIVVS 2009 Proceedings, pp. 51–57, 2009, doi: 10.1109/CIVVS.2009.4938723. [Google Scholar]
- “Mapillary Datasets.” Accessed: Feb. 24, 2025. [Online]. Available: https://www.mapillary.com/datasets?locale=fr_FR [Google Scholar]
- Z. Yang, C. Zhao, H. Maeda, and Y. Sekimoto, “Development of a Large-Scale Roadside Facility Detection Model Based on the Mapillary Dataset,” Sensors 2022, Vol. 22, Page 9992, vol. 22, no. 24, p. 9992, Dec. 2022, doi: 10.3390/S22249992. [Google Scholar]
- “TuSimple Dataset.” Accessed: Feb. 24, 2025. [Online]. Available: https://paperswithcode.com/dataset/tusimple [Google Scholar]
- D. Neven Bert De Brabandere Stamatios Georgoulis Marc Proesmans Luc Van Gool ESAT-PSI and K. Leuven, “Towards End-to-End Lane Detection: an Instance Segmentation Approach”. [Google Scholar]
- “CULane Dataset.” Accessed: Feb. 24, 2025. [Online]. Available: https://xingangpan.github.io/projects/CULane.html [Google Scholar]
- R. R.-P. of the E. M. Society and undefined 1963, “w. G. Cochran, Sampling Techniques (John Wiley & Sons, 1963), ix+ 413 pp., 72s.,” cambridge.org, doi: 10.1017/S0013091500025724. [Google Scholar]
- “GitHub harryhan618/SCNN_Pytorch: Pytorch implementation of ‘Spatial As Deep: Spatial CNN for Traffic Scene Understanding.’” Accessed: Feb. 24, 2025. [Online]. Available: https://github.com/harryhan618/SCNN_Pytorch [Google Scholar]
- “GitHub chuanenlin/lane-detector: https://towardsdatascience.com/tutorial-build-a-lane-detector679fd8953132.” Accessed: Feb. 26, 2025. [Online]. Available: https://github.com/chuanenlin/lane-detector [Google Scholar]
- “Norme NF EN 1436.” Accessed: Jan. 28, 2025. [Online]. Available: https://www.boutique.afnor.org/fr-fr/norme/nf-en-1436/produits-de-marquage-routier-performances-des-marquagesappliques-sur-la-ro/fa179243/81040 [Google Scholar]
- D. Liang, Y. Guo, S. Zhang, … T. M.-J. of C., and undefined 2020, “Lane detection: A survey with new results,” SpringerD Liang, YC Guo, SK Zhang, TJ Mu, X HuangJournal of Computer Science and Technology, 2020•Springer, vol. 35, no. 3, pp. 493–505, May 2020, doi: 10.1007/s11390-020-0476-4. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.