Open Access
Issue
EPJ Web Conf.
Volume 323, 2025
22nd International Metrology Congress (CIM2025)
Article Number 12005
Number of page(s) 6
Section Electromagnetism
DOI https://doi.org/10.1051/epjconf/202532312005
Published online 07 April 2025
  1. A.S. Bush, Measurement of microwave power – A review of techniques used for measurement of highfrequency RF. IEEE Instrum. Meas. Mag. 2007, 38, 1473–1476. [Google Scholar]
  2. A. Dehe, K. Fricke-Neuderth, V. Krozer, Thermoelectric power sensor for microwave applications by commercial CMOS fabrication. IEEE Electron Device Letters, 18(9), 450–452. 1997 [Google Scholar]
  3. D. B. Wang, X. P. Liao, T. Liu, Optimization of Indirectly-Heated Type Microwave Power Sensors Based on GaAs Micromachining. IEEE Sensors Journal, 12(5), 1349–1355. 2012 [Google Scholar]
  4. Z. Yi, X. Liao A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology. Sensors 2016, 16, 921. https://doi.org/10.3390/s16060921 [CrossRef] [PubMed] [Google Scholar]
  5. Z. Zhang, X. Liao, Zhang, Z., & Liao, X. Suspended Thermopile for Microwave Power Sensors Based on Bulk MEMS and GaAs MMIC Technology. IEEE Sensors Journal, 15(4). 2022 [Google Scholar]
  6. C. Mou, J. Chen, H. Peng, ElectromagneticThermal Co-Simulation of Planar Monopole Antenna Based on HIE-FDTD Method. MDPIElectronics, 11(24), 4167. 2022 [Google Scholar]
  7. Z. Zhou, K.L. Melde, L. Development of a Broadband Coplanar Waveguide-to-Microstrip Transition with Vias. IEEE Transactions on advanced packaging, 31(4), 861–872, 2008 [Google Scholar]
  8. X. Hu, J. Tian, W. Tang, G. Zhang, Impact of Ground Via Placement and Size in Grounded Coplanar Waveguide Interconnects. IEEE International Workshop on Radio Frequency and Antenna Technologies, Shenzhen, China, 38–40. 2024 [Google Scholar]
  9. M. Grady, J.M. Kovitz, A. Iancovici, Y. Borenstein, Improved bandwidth using 3D Printed Quasi-Ideal Grounded Coplanar Waveguide Transmission Line. IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, USA, 1–4. 2022. [Google Scholar]
  10. O. Socher, O. Degani, Y. Nemirovskyl, Optimal consideration of CMOS compatible IR thermoelectric sensors. Sens. Act.A, vol. 71, no. 1–2, 107–115, Nov. 1998. [Google Scholar]
  11. C.G. Mattsson, G. Thungstrom, K. Bertilssom, H-E Nilsson, H. Martin, Design of a Micromachined Thermopile Infrared Sensor With a Self-Supported SiO_2/SU-8 Membrane. IEEE Sensors Journal, 8(12), 2044–2052. 2018. [Google Scholar]
  12. F. Becher, Design of power sensor for measuring average power in the frequency band 110 GHz – 170 GHz, Ph.D. thesis, University of Paris-Saclay [Google Scholar]
  13. S. Kodato, T. Wakabayashi, Q. Zhuang, S. Uchida, New Structure for DC-60 GHz thermal power sensor. IEEE MTT-S Int. Microw. Symp. Dig., Sanf Francisco CA, Jun. 1996, vol. 2, 871–874. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.