Open Access
Issue
EPJ Web Conf.
Volume 324, 2025
V International Conference on Nuclear Structure and Dynamics (NSD2024)
Article Number 00004
Number of page(s) 6
DOI https://doi.org/10.1051/epjconf/202532400004
Published online 11 April 2025
  1. R. M. Perez-Vidal, F. Galtarossa, T. Mijatovic, S. Szilner, I. Zanon, D. Brugnara, J. Pellumaj, M. Ciemala, J. J. Valiente-Dobon, L. Corradi, E. Clement, S. Leoni, B. Fornal, M. Siciliano, A. Gadea, Nuclear structure ad- vancements with multi-nucleon transfer reactions. Eur. Phys. J. A 59, 114 (2023). https://doi.org/10.1140/epja/s10050-023-01027-2 [CrossRef] [Google Scholar]
  2. L. Corradi, G. Pollarolo, and S. Szilner, Multinucleon transfer processes in heavy-ion reactions. J. of Phys. G: Nucl. Part. Phys. 36, 113101 (2009). https://doi:10.1088/0954-3899/36/11/113101 [CrossRef] [Google Scholar]
  3. C. H. Dasso, G. Pollarolo, and A. Winther, Systematics of isotope production with radioactive beams. Phys. Rev. Lett. 73, 1907 (1994). https://doi:10.1103/PhysRevLett.73.1907 [CrossRef] [PubMed] [Google Scholar]
  4. V. Zagrebaev, and W. Greiner, Production of new heavy isotopes in low-energy multinucleon transfer re- actions. Phys. Rev. Lett. 101, 122701 (2008). https://doi.org/10.1103/PhysRevLett.101.122701 [CrossRef] [PubMed] [Google Scholar]
  5. T. Mijatovic, Multinucleon transfer reactions: a mini- review of recent advances. Front. Phys. 10, 965198 (2022). https://doi.org/10.3389/fphy.2022.965198 [CrossRef] [Google Scholar]
  6. Y. X. Watanabe et al., Pathway for the Production of Neutron-Rich Isotopes around the N = 126 Shell Closure. Phys. Rev. Lett. 115, 172503 (2015). https://doi.org/10.1103/PhysRevLett.115.172503 [CrossRef] [PubMed] [Google Scholar]
  7. T. Mijatovic et al., Multinucleon transfer reactions in the 40Ar+208Pb system. Phys. Rev. C 94, 064616 (2016). https://doi.org/10.1103/PhysRevC.94.064616 [CrossRef] [Google Scholar]
  8. S. Szilner et al., Multinucleon transfer reactions in closed-shell nuclei. Phys. Rev. C 76, 024604 (2007). https://doi.org/10.1103/PhysRevC.76.024604 [CrossRef] [Google Scholar]
  9. L. Corradi et al., Multinucleon transfer reactions: Present status and perspectives. Nucl. Instr. Meth. Phys. Res. B 317, 743 (2013). https://doi.org/10.1016/j.nimb.2013.04.093 [CrossRef] [Google Scholar]
  10. J. Diklic et al., Transfer reactions in 206Pb+118Sn: From quasielastic to deep-inelastic processes. Phys. Rev. C 107, 014619 (2023). https://doi.org/10.1103/PhysRevC.107.014619 [CrossRef] [Google Scholar]
  11. S. Szilner et al., Quest for Cooper pair transfer in heavy-ion reactions: The 206Pb+118Sn case. Phys. Rev. Lett. 133, 202501 (2024). https://doi.org/10.1103/PhysRevLett.133.202501 [CrossRef] [PubMed] [Google Scholar]
  12. A. Winther, Grazing reactions in collisions between heavy nuclei. Nucl. Phys. A 572, 191 (1994). https://doi.org/10.1016/0375-9474(94)90430-8 [CrossRef] [Google Scholar]
  13. A. Winther, Dissipation, polarization and fluctuation in grazing heavy-ion collisions and the boundary to the chaotic regime. Nucl. Phys. A 594, 203 (1995). https://doi.org/10.1016/0375-9474(95)00374-A [CrossRef] [Google Scholar]
  14. K. Sekizawa, TDHF theory and its extensions for the multinucleon transfer reaction: A mini review. Front. Phys. 7, 20 (2019). https://doi.org/10.3389/fphy.2019.00020 [CrossRef] [Google Scholar]
  15. D. D. Zhang, D. Vretenar, T. Niksic, P. W. Zhao, and J. Meng, Multinucleon transfer with time-dependent covariant density functional theory. Phys. Rev. C 109, 024616 (2024). https://doi.org/10.1103/PhysRevC.109.024614 [CrossRef] [Google Scholar]
  16. F.C. Dai et al., Theoretical study of multinucleon transfer reactions by coupling the Langevin dynamics iteratively with the master equation. Phys. Rev. C 109, 024617 (2024). https://doi.org/10.1103/PhysRevC.109.024617 [CrossRef] [Google Scholar]
  17. F. Galtarossa et al., Mass correlation between light and heavy reaction products in multinucleon trans- fer 197Au+130Te collisions. Phys. Rev. C 97, 054606 (2018). https://doi.org/10.1103/PhysRevC.97.054606 [CrossRef] [Google Scholar]
  18. E. Fioretto et al., A gas detection system for fragment identification in low-energy heavy-ion collisions. Nucl. Instr. Meth. Phys. Res. A A 899, 73–79 (2018). https://doi.org/10.1016/j.nima.2018.05.011 [CrossRef] [Google Scholar]
  19. P. Colovic et al., Population of lead isotopes in bi- nary reactions using a Rb-94 radioactive beam. Phys. Rev. C 102, 054609 (2020). https://doi.org/10.1103/PhysRevC.102.054609 [CrossRef] [Google Scholar]
  20. N. Warr et al., The Miniball spectrometer. Eur. Phys. J. A 49, 40 (2013). https://doi.org/10.1140/epja/i2013-13040-9 [CrossRef] [Google Scholar]
  21. A.N. Ostrowski et al., CD: A double sided silicon strip detectorforradioactivenuclearbeamexperiments. Nucl. Instr. Meth. Phys. Res. A 480, 448 (2002). https://doi.org/10.1016/S0168-9002(01)00954-8 [CrossRef] [Google Scholar]
  22. L. Corradi et al., Evidence of proton-proton correla- tions in the 116Sn+60Ni transferreactions. Phys. Lett. B 834, 137477 (2022). https://doi.org/10.1016/j.physletb.2022.137477 [CrossRef] [Google Scholar]
  23. T. Mijatovic, L. Corradi et al., LNL PAC Proposal, 2023. [Google Scholar]
  24. J.J. Valiente-Dobòn, et al. Conceptual design of the AGATA 2π array at LNL. Nucl. Instr. Meth. Phys. Res. A 1049, 168040 (2023). https://doi.org/10.1016/j.nima.2023.168040 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.