Open Access
Issue
EPJ Web Conf.
Volume 324, 2025
V International Conference on Nuclear Structure and Dynamics (NSD2024)
Article Number 00019
Number of page(s) 4
DOI https://doi.org/10.1051/epjconf/202532400019
Published online 11 April 2025
  1. S. Goriely, Radiative neutron captures by neutron- rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436, 10–18 (1998). https://doi.org/10.1016/S0370-2693(98)00907-1 [CrossRef] [Google Scholar]
  2. A. Bracco, E. G. Lanza, and A. Tamii, Isoscalar and isovector dipole excitations: Nuclear properties from low-lying states and from the isovector giant dipole res- onance. Prog. Part. Nucl. Phys. 106, 360–433 (2019). https://doi.org/10.1016/j.ppnp.2019.02.001 [Google Scholar]
  3. T. Kawano, Y. S. Cho, P. Dimitriou, D. Filipescu, N. Iwamoto, V. Plujko, X. Tao, H. Utsunomiya, V. Varlamov, R. Xu, R. Capote, I. Gheorghe, O. Gorbachenko, Y. L. Jin, T. Renstrøm, M. Sin, K. Stopani, Y. Tian, G. M. Tveten, J. M. Wang, T. Belgya, R. Firestone, S. Goriely, J. Kopecky, M. Krticka, R. Schwengner, S. Siem, and M. Wiedeking, IAEA Photonuclear Data Library 2019. Nuclear Data Sheets 163, 109–162 (2020). https://doi.org/10.1016/j.nds.2019.12.002 [Google Scholar]
  4. K. Heyde, P. von Neumann-Cosel, and A. Richter, Magnetic dipole excitations in nuclei: Elementary modes of nucleonic motion. Rev. Mod. Phys. 82, 2365–2419 (2010). https://doi.org/10.1103/RevModPhys.82.2365 [Google Scholar]
  5. N. Paar, D. Vretenar, E. Khan, and G. Colò, Exotic modes of excitation in atomic nuclei far from stability. Reports on Progress in Physics 70, R02 (2007). https://doi.org/10.1088/0034-4885/70/5/R02 [CrossRef] [Google Scholar]
  6. S. Goriely and E. Khan, Large-scale QRPA calcu- lation of E1-strength and its impact on the neutron capture cross section. Nuclear Physics A 706, 217–232 (2002). https://doi.org/10.1016/S0375-9474(02)00860-6 [CrossRef] [Google Scholar]
  7. G. Kruzic, T. Oishi, D. Vale, and N. Paar, Magnetic dipole excitations based on the relativistic nuclear energy density functional. Phys. Rev. C 102, 044315 (2020). https://doi.org/10.1103/PhysRevC.102.044315 [CrossRef] [Google Scholar]
  8. M. Guttormsen, R. Chankova, U. Agvaanluvsan, E. Algin, L. A. Bernstein, F. Ingebretsen, T. Lönnroth, S. Messelt, G. E. Mitchell, J. Rekstad, A. Schiller, S. Siem, A. C. Sunde, A. Voinov, S. Ødegård, Radiative strength functions in 93-98Mo. Phys. Rev. C 71, 044307 (2005). https://doi.org/10.1103/PhysRevC.71.044307 [CrossRef] [Google Scholar]
  9. R. Schwengner, S. Frauendorf, A. C. Larsen, Lowenergy enhancement of magnetic dipole radiation. Phys. Rev. Lett. 111, 232504 (2013). https://doi.org/10.1103/PhysRevLett.111.232504 [Google Scholar]
  10. O. Wieland, A. Bracco, F. Camera, G. Benzoni, N. Blasi, S. Brambilla, F. Crespi, A. Giussani, S. Leoni, P. Mason, B. Million, A. Moroni, S. Barlini, V. L. Kravchuk, F. Gramegna, A. Lanchais, P. Mastinu, A. Maj, M. Brekiesz, M. Kmiecik, M. Bruno, E. Geraci, G. Vannini, G. Casini, M. Chiari, A. Nannini, A. Ordine, E. Ormand, Giant dipole resonance in the hot and ther- malized132Ce nucleus: Damping of collective modes at finite temperature. Phys. Rev. Lett. 97, 012501 (2006). https://doi.org/10.1103/PhysRevLett.97.012501 [Google Scholar]
  11. T. Baumann, E. Ramakrishnan, A. Azhari, J.R. Beene, R.J. Charity, J.F. Dempsey, M.L. Halbert, P.-F. Hua, R.A. Kryger, P.E. Mueller, R. Pfaff, D.G. Sarantites, L.G. Sobotka, D.W. Stracener, M. Thoennessen, G. Van Buren, R.L. Varner, S. Yokoyama, Evolution of the giant dipole resonance in excited 120Sn and 208Pb nuclei populated by inelastic alpha scattering. Nucl. Phys. A 635, 428–445 (1998). https://doi.org/10.1016/S0375-9474(98)00197-3 [CrossRef] [Google Scholar]
  12. E. Ramakrishnan, T. Baumann, A. Azhari, R. A. Kryger, R. Pfaff, M. Thoennessen, S. Yokoyama, J. R. Beene, M. L. Halbert, P. E. Mueller, D. W. Stracener, R. L. Varner, R. J. Charity, J. F. Dempsey, D. G. Sarantites, L. G. Sobotka, Giant Dipole Resonance Built on Highly Excited States of 120Sn Nuclei Populated by Inelastic α Scattering. Phys. Rev. Lett. 76, 2025–2028 (1996). https://doi.org/10.1103/PhysRevLett.76.2025 [Google Scholar]
  13. H. Michael Sommermann, Microscopic description of giant resonances in highly excited nuclei. Ann. Phys. 151, 163–203 (1983). https://doi.org/10.1016/0003-4916(83)90318-4 [Google Scholar]
  14. E. Yüksel, G. Colò, E. Khan, Y. F. Niu, and K. Bozkurt, Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approx- imation framework. Phys. Rev. C 96, 024303 (2017). https://doi.org/10.1103/PhysRevC.96.024303 [CrossRef] [Google Scholar]
  15. A. Kaur, E. Yüksel, and N. Paar, Electric dipole tran- sitions in the relativistic quasiparticle random-phase ap- proximation at finite temperature. Phys. Rev. C 109, 014314 (2024). https://doi.org/10.1103/PhysRevC.109.014314 [CrossRef] [Google Scholar]
  16. A. L. Goodman, Finite-temperature HFB theory. Nuclear Phys. A 352, 30 (1981). https://doi.org/10.1016/0375-9474(81)90557-1 [CrossRef] [Google Scholar]
  17. E. Yüksel, T. Marketin, and N. Paar, Optimizing the relativistic energy density functional with nuclear ground state and collective excitation properties. Phys. Rev. C 99, 034318 (2019). https://doi.org/10.1103/PhysRevC.99.034318 [CrossRef] [Google Scholar]
  18. T. Niksic, N. Paar, D. Vretenar, P. Ring, DIRHB—A relativistic self-consistent mean-field framework for atomic nuclei. Computer Phys. Commun. 185, 1808–1821 (2014). https://doi.org/10.1016/j.cpc.2014.02.027 [Google Scholar]
  19. G. Kruzic, T. Oishi, and N. Paar, Magnetic quadrupole transitions in the relativistic energy den- sity functional theory. Eur. Phys. J. A 59, 50 (2023). https://doi.org/10.1140/epja/s10050-023-00958-0 [CrossRef] [Google Scholar]
  20. H. Michael Sommermann, Microscopic description of giant resonances in highly excited nuclei. AnnalsofPhys. 151, 163 (1983). https://doi.org/10.1016/0003-4916(83)90318-4 [Google Scholar]
  21. E. Yüksel, G. Colo, E. Khan, Y. F. Niu, and K. Bozkurt, Multipole excitations in hot nuclei within the finite temperature quasiparticle random phase approx- imation framework. Phys. Rev. C 96, 024303 (2017). https://doi.org/10.1103/PhysRevC.96.024303 [CrossRef] [Google Scholar]
  22. A. Kaur, E. Yüksel, and N. Paar, Finite-temperature effects in magnetic dipole transitions. Phys. Rev. C 109, 024305 (2024). https://doi.org/10.1103/PhysRevC.109.024305 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.