Open Access
Issue
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
Article Number 04005
Number of page(s) 4
Section Energy Conversion Technologies
DOI https://doi.org/10.1051/epjconf/202532604005
Published online 21 May 2025
  1. D. Sioud, M. Bourouis, A. Bellagi, Investigation of an ejector powered double-effect absorption-/recompression refrigeration cycle. Int. J. Refrig. 99, 453–468 (2019). https://doi.org/10.1016/j.ijrefrig.2018.11.042 [CrossRef] [Google Scholar]
  2. B. Safarnezhad Bagheri, R. Shirmohammadi, S.M.S. Mahmoudi, M.A. Rosen, Optimization and comprehensive exergy-based analyses of a parallel flow double effect water–lithium bromide absorption refrigeration system. Appl. Therm. Eng. 152, 643–653 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.105 [CrossRef] [Google Scholar]
  3. M. Chahartaghi, H. Golmohammadi, A.F. Shojaei, Performance analysis and optimization of new double effect lithium bromide–water absorption chiller with series and parallel flows. Int. J. Refrig. 97, 73–87 (2019). https://doi.org/10.1016/j.ijrefrig.2018.08.011 [CrossRef] [Google Scholar]
  4. M.B. Arun, M.P. Maiya, S.S. Murthy, Equilibrium low pressure generator temperatures for double-effect series flow absorption refrigeration systems. Appl. Therm. Eng. 20 (3), 227–242 (2000). https://doi.org/10.1016/S1359-4311(99)00029-0 [CrossRef] [Google Scholar]
  5. M.B. Arun, M.P. Maiya, S.S. Murthy, Performance comparison of double-effect parallel flow and series flow water–lithium bromide absorption systems. Appl. Therm. Eng. 21 (12), 1273–1279 (2001). https://doi.org/10.1016/S1359-4311(01)00005-9 [CrossRef] [Google Scholar]
  6. G.P. Xu, Y.Q. Dai, Theoretical analysis and optimization of a double-effect parallel flow-type absorption chiller. Appl. Therm. Eng. 17 (12), 157–170 (1997). https://doi.org/10.1016/S1359-4311(96)00021-X [CrossRef] [Google Scholar]
  7. Y.L. Liu, R.Z. Wang, Performance prediction of a solar/gas driving double effect LiBr–H₂O absorption system. Renew. Energy 29 (10), 1677–1695 (2004). https://doi.org/10.1016/j.renene.2004.01.016 [CrossRef] [Google Scholar]
  8. F.M. Kashkooli, M. Rezaeian, M. Sefidgar, M. Soltani, M. Mafi, Performance evaluation of series and parallel two-stage absorption chillers driven by solar energy: Energetic viewpoint. Gas Process. J., 7 (2), 77–90(2019). http://dx.doi.org/10.22108/gpj.2020.115704.1049 [Google Scholar]
  9. R. Gomri, Second law comparison of single effect and double effect vapour absorption refrigeration systems. Energy Convers. Manag. 50 (5), 1279–1287 (2009). https://doi.org/10.1016/j.enconman.2009.01.019 [CrossRef] [Google Scholar]
  10. I. Boukholda, N. Ben Ezzine, A. Bellagi, Experimental investigation and simulation of commercial absorption chiller using natural refrigerant R717 and powered by Fresnel solar collector. Int. J. Thermofluids 27, 101213 (2025). https://doi.org/10.1016/j.ijft.2025.101213 [CrossRef] [Google Scholar]
  11. O. Ozturk, I. Kandemir, Analysis of single and double effect LiBr–H₂O absorption cooling systems to meet the cooling requirements of surface ships. Appl. Therm. Eng. 262, 125206 (2025). https://doi.org/10.1016/j.applthermaleng.2024.125 206 [CrossRef] [Google Scholar]
  12. G. Grossman, H. Hellmann, Improved property data correlations of absorption fluids for computer simulation of heat pump cycles. ASHRAE Trans. 102 (Pt 1), 980–997 (1996). http://www.scopus.com/inward/record.url?scp=00 29724302&partnerID=8YFLogxK [Google Scholar]
  13. International Association for the Properties of Water and Steam, Revised Supplementary Release on Saturation Properties of Ordinary Water Substance, IAPWS Release, 1–27 (1992). https://www.iapws.org/relguide/Supp-sat.pdf [Google Scholar]
  14. International Association for the Properties of Water and Steam (IAPWS), Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, IAPWS Release, 1–48 (2007). https://iapws.org/relguide/IF97-Rev.pdf [Google Scholar]
  15. International Association for the Properties of Water and Steam (IAPWS), Revised Release on the IAPWS Industrial Formulation 1995 for the Thermodynamic Properties of Water and Steam, IAPWS Release, 1–41 (2009). https://www.teos-10.org/pubs/IAPWS-95-Revised_2009.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.