Open Access
Issue |
EPJ Web Conf.
Volume 326, 2025
International Conference on Functional Materials and Renewable Energies: COFMER’05 5th Edition
|
|
---|---|---|
Article Number | 05011 | |
Number of page(s) | 4 | |
Section | Smart Energy systems: Storage, Management, Integration | |
DOI | https://doi.org/10.1051/epjconf/202532605011 | |
Published online | 21 May 2025 |
- A. Kumar, A.Shankar, L.D. Hollebeek, A.Behl,W. M. Lim, Generative artificial intelligence (GenAI) revolution: A deep dive into GenAI adoption, Journal of Business Research, (2025). [Google Scholar]
- L. D. Hollebeek, D.E. Sprott, M.K. Brady, Rise of the Machines? Customer Engagement in Automated Service Interactions, Journal of Service Research, (2021). [Google Scholar]
- W. M. Lim, A. Gunasekara, J. Leigh Pallant, J. Ian Pallant, E. Pechenkina, Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators,The International Journal of Management Education, 21, 2,(2023). [Google Scholar]
- D. Baidoo-Anu, L.O. Ansah, Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning, Journal of AI, (2023). [Google Scholar]
- L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin, T. Liu, A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions, ACM Transactions on Information Systems, 43, 12, pp. 1-55, (2025). [CrossRef] [Google Scholar]
- K. Shuster, S. Poff, M. Chen, D. Kiela, J. Weston, Retrieval augmentation reduces hallucination in conversation, In Findings of the Association for Computational: EMNLP 2021, p. 3784–3803, (2021). [Google Scholar]
- Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, Retrieval-augmented generation for large language models: A survey, Computation and Language, (2023). https://doi.org/10.48550/arXiv.2312.10997 [Google Scholar]
- T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, Y. Artzizx, BRERTScore: Evaluating Text Generation with Bert, Computation and Language, (2020). https://doi.org/10.48550/arXiv.1904.09675. [Google Scholar]
- C.Y Lin, ROUGE: A Package for Automatic Evaluation of Summaries, Proceedings of Workshop on Text Summarization Branches Out, Association for Computational Linguistics, (2004). [Google Scholar]
- G. Kuratomi, P. Pirozelli, F.G. Cozman, S. M. Peres, A RAG-Based Institutional Assistant, Computation and Language, (2025). https://doi.org/10.48550/arXiv.2501.13880 [Google Scholar]
- Z. Liu, L. Zhang, Q.L.J. Wu, G. Zhu, Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation, Information Retrieval, (2024). https://doi.org/10.48550/arXiv.2411.07021 [Google Scholar]
- S.K. Daroch, P. Singh, An Analysis of Various Text Segmentation Approaches, Proceedings of International Conference on Intelligent Cyber-Physical Systems. Algorithms for Intelligent Systems, (2022). [Google Scholar]
- M. A. Mersha, M. G. Yigezu, J. Kalita, Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms, Procedia Computer Science, 244, 11877-0509, pp. 121-132, (2024). [CrossRef] [Google Scholar]
- H. Yang, J. Guo, J. Qi, J. Xie, S. Zhang, S. Yang, N. Li, M. Xu, A Method for Parsing and Vectorization of Semi-structured Data used in Retrieval Augmented Generation, Computer Science, (2024). [Google Scholar]
- N. Roy, L.F.R. Ribeiro, R. Blloshmi, K. Small, Learning When to Retrieve, What to Rewrite, and How to Respond in Conversational QA, Computation and Language, (2024). [Google Scholar]
- Z. Guo, L. Xia, Y. Yu, T. Ao, C. Huang, Lightrag: Simple and Fast Retrieval-Augmented Generation, Information Retrieval, (2024). https://doi.org/10.48550/arXiv.2410.05779 [Google Scholar]
- A. Bennani, S. Khoulji, M.L. Kerkeb, Design of a Smart Model For Geolocalisation and E-commerce in the Semantic Web, Transactions on Machine Learning and Artificial Intelligence, 5,14, (2017). [Google Scholar]
- A.G. Radwan, S.K. Abd-El-Hafiz, I.T. Abdel Halim, Y. Liu, M. Qiu, Advanced Research Trends in Sustainable Solutions, Data Analytics, and Security (IGI Global, 2025). [CrossRef] [Google Scholar]
- J. Devlin, M.W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Computation and Language (2019). https://doi.org/10.48550/arXiv.1810.04805 [Google Scholar]
- OpenAI, New embedding models and API updates models and API updates, 25 01 2024. [En ligne]. Available: https://openai.com/index/new-embedding-models-and-api-updates/. [Accès le 20 01 2025]. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.