Open Access
Issue
EPJ Web Conf.
Volume 327, 2025
31st World Conference of the International Nuclear Target Development Society (INTDS2024)
Article Number 01015
Number of page(s) 7
DOI https://doi.org/10.1051/epjconf/202532701015
Published online 26 June 2025
  1. A.H.F. Muggleton, Preparation of thin nuclear targets, Journal of Physics E: Scientific Instruments 12, 780 (1979). 10.1088/0022-3735/12/9/001 [CrossRef] [Google Scholar]
  2. A. Stolarz, Target preparation for research with charged projectiles, Journal of Radioanalytical and Nuclear Chemistry 299, 913 (2014). 10.1007/s10967-013-2652-2 [CrossRef] [PubMed] [Google Scholar]
  3. Facility for Rare Isotope Beams, Frib, http://www.frib.msu.edu [Google Scholar]
  4. J.P. Greene, J. Neubauer, D. Deligiannis, A new evaporator system for target preparation at Argonne National Laboratory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 561, 58 (2006). 10.1016/j.nima.2005.12.228 [Google Scholar]
  5. M.J. Silveira, A. Pica, W. Loveland, The vapor deposition of high specific activity actinides, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 982, 164570 (2020). 10.1016/j.nima.2020.164570 [Google Scholar]
  6. J. Gates, J. Pore, H. Crawford, D. Shaughnessy, M.A. Stoyer, Tech. Rep. LLNL-TR841992, Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Brookhaven National Laboratory (BNL), Upton, NY (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) (2022), https://www.osti.gov/biblio/1896856 [Google Scholar]
  7. C.M. Gatermann, Nuclear Target Development Summer School 2024 (2024), https://indico.phy.anl.gov/event/50/ [Google Scholar]
  8. N.R. Council, Assuring a Future U.S.-Based Nuclear and Radiochemistry Expertise (National Academies Press, Washington, DC, https://doi.org/10.17226/13308, 2012) [Google Scholar]
  9. N.R. Council, Nuclear Physics: Exploring the Heart of Matter (National Academies Press, Washington, DC, https://doi.org/10.17226/13438, 2013) [Google Scholar]
  10. G.E. Dodge, The U.S. Nuclear Science Long Range Plan, Nuclear Physics News 34, 3 (2024), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/10619127.2024.2303306. 10.1080/10619127.2024.2303306 [Google Scholar]
  11. J.M. Heagney, Preparation of isotopic accelerator targets, Nuclear Instruments and Methods 102, 451 (1972). 10.1016/0029-554X(72)90631-3 [CrossRef] [Google Scholar]
  12. D.N. Braski, A study of various parting agents for producing self-supporting thin films, Nuclear Instruments and Methods 102, 553 (1972). 10.1016/0029-554X(72)90645-3 [CrossRef] [Google Scholar]
  13. F.J. Karasek, Techniques for the Fabrication of Ultra-thin Metallic Foils*, Nuclear Science and Engineering 17, 365 (1963), publisher: Taylor & Francis _eprint: https://doi.org/10.13182/NSE63-A17384. 10.13182/NSE63-A17384 [CrossRef] [Google Scholar]
  14. F.J. Karasek, Fabrication of target foils by rolling techniques, Nuclear Instruments and Methods 102, 457 (1972). 10.1016/0029-554X(72)90632-5 [CrossRef] [Google Scholar]
  15. E. Kellner, P. Maier-Komor, Rolling Thin Uranium Foils and Other Exotic Isotopic Metals, in Sixth Annual Conference of the International Nuclear Targetry Development Society (1978), Report LBL-7950:27, pp. 27–34 [Google Scholar]
  16. N. Esker, The 2022 Frank Karasek Memorial Scholarship Fund, INTD Newsletter, Vol 51 (2023), https://www.intds.org/newslett-archive/ [Google Scholar]
  17. J. Huizar, W. Botha, N.E. Esker, M. Zach, Rolling foil fundamentals, pack lubrication, and areal density measurements, in Proceedings of the 2024 International Nuclear Targetry Development Society (Knoxville, TN, 2025) [Google Scholar]
  18. G.T.J. Arnison, A technique for producing deuterated polyethylene targets, Nuclear Instruments and Methods 40, 359 (1966). 10.1016/0029-554X(66)90400-9 [CrossRef] [Google Scholar]
  19. M. Febbraro, D. Walter, S.C. Shadrick, S.D. Pain, K.A. Chipps, C. Thornsberry, E. Lesser, Improved technique for preparation of deuterated-polyethylene targets, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 410, 53 (2017). 10.1016/j.nimb.2017.07.036 [CrossRef] [Google Scholar]
  20. W. Parker, R. Falk, Molecular plating: A method for the electrolytic formation of thin inorganic films, Nuclear Instruments and Methods 16, 355 (1962). 10.1016/0029-554X(62)90142-8 [CrossRef] [Google Scholar]
  21. N. Trautmann, H. Folger, Preparation of actinide targets by electrodeposition, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 282, 102 (1989). 10.1016/0168-9002(89)90117-4 [CrossRef] [Google Scholar]
  22. C. Ingelbrecht, A. Moens, R. Eykens, A. Dean, Improved electrodeposited actinide layers, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 397, 34 (1997). 10.1016/S0168-9002(97)00588-3 [CrossRef] [Google Scholar]
  23. K. Eberhardt, W. Brüchle, C.E. Düllmann, K.E. Gregorich, W. Hartmann, A. Hübner, E. Jäger, B. Kindler, J.V. Kratz, D. Liebe et al., Preparation of targets for the gas-filled recoil separator TASCA by electrochemical deposition and design of the TASCA target wheel assembly, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 590, 134 (2008). 10.1016/j.nima.2008.02.069 [CrossRef] [Google Scholar]
  24. A. Vascon, S. Santi, A.A. Isse, T. Reich, J. Drebert, H. Christ, K. Eberhardt, C.E. Düllmann, Fundamental aspects of molecular plating and production of smooth crack-free Nd targets, Journal of Radioanalytical and Nuclear Chemistry 299, 1085 (2014). 10.1007/s10967-013-2631-7 [CrossRef] [Google Scholar]
  25. W. Loveland, High quality actinide targets, Journal of Radioanalytical and Nuclear Chemistry 307, 1591 (2016). 10.1007/s10967-015-4337-5 [CrossRef] [Google Scholar]
  26. A.T. Chemey, A. Pica, W.D. Loveland, M. Silveira, Preparation of Actinide Targets at Oregon State University, Journal of Radioanalytical and Nuclear Chemistry 331, 5101 (2022). 10.1007/s10967-022-08610-9 [CrossRef] [Google Scholar]
  27. A. Stolarz, R. Eykens, A. Moens, Y. Aregbe, Actinide target preparation at IRMM—then and now, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 613, 351 (2010). 10.1016/j.nima.2009.09.074 [CrossRef] [Google Scholar]
  28. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Srim– the stopping and range of ions in matter (2010), Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.