Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01032
Number of page(s) 14
DOI https://doi.org/10.1051/epjconf/202532801032
Published online 18 June 2025
  1. Ammar, M., Russello, G., & Crispo, B. (2018). Internet of Things: A survey on the security of IoT frameworks. Journal of Information Security and Applications, 38, 8–27. https://doi.org/10.1016/j.jisa.2017.11.002 [CrossRef] [Google Scholar]
  2. Conti, M., Dehghantanha, A., Franke, K., & Watson, S. (2018). Internet of Things security and forensics: Challenges and opportunities. Future Generation Computer Systems, 78, 544–546. https://doi.org/10.1016/j.future.2017.07.060 [CrossRef] [Google Scholar]
  3. Doshi, R., Apthorpe, N., & Feamster, N. (2018). Machine learning DDoS detection for consumer Internet of Things devices. 2018 IEEE Security and Privacy Workshops, 29–35. https://doi.org/10.1109/SPW.2018.00013 [CrossRef] [Google Scholar]
  4. Fuqaha, A., et al. (2015). Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376. https://doi.org/10.1109/COMST.2015.2444095 [CrossRef] [Google Scholar]
  5. HaddadPajouh, H., et al. (2018). A survey on Internet of Things security: Challenges, solutions and future directions. Computer Networks, 148, 283–294. https://doi.org/10.1016/j.comnet.2018.01.021 [Google Scholar]
  6. Meidan, Y., et al. (2018). Detection of unauthorized IoT devices using machine learning techniques. arXiv preprint arXiv:1802.02041. https://arxiv.org/abs/1802.02041 [Google Scholar]
  7. Mosenia, A., & Jha, N.K. (2017). A comprehensive study of security of Internet-of-Things. IEEE Transactions on Emerging Topics in Computing, 5(4), 586–602. https://doi.org/10.1109/TETC.2016.2606384 [CrossRef] [Google Scholar]
  8. Mosenia, A., Sur-Kolay, S., Raghunathan, A., & Jha, N.K. (2017). Hardware security in IoT devices: Challenges and countermeasures. Proceedings of the IEEE, 105(6), 1089–1110. https://doi.org/10.1109/JPROC.2017.2687634 [Google Scholar]
  9. Sfar, A.R., Natalizio, E., Challal, Y., & Chtourou, Z. (2018). A roadmap for security challenges in the Internet of Things. Digital Communications and Networks, 4(2), 118–137. https://doi.org/10.1016Zj.dcan.2017.04.003 [CrossRef] [Google Scholar]
  10. Sittön-Candanedo, I., et al. (2019). Edge computing, IoT and machine learning: A case study. Sensors, 19(17), 3551. https://doi.org/10.3390/s19173551 [CrossRef] [PubMed] [Google Scholar]
  11. Mohammed Naif Alatawi, Detection of fraud in IoT based credit card collected dataset using machine learning, Machine Learning with Applications, Volume 19, 2025. [Google Scholar]
  12. S. Jerald Nirmal Kumar, M.M. Gowthul Alam, TF Michael Raj, R. Uma Mageswari, Golden Search Optimization based adaptive and diagonal kernel convolution neural network for disease prediction and securing IoT data in cloud, Applied Soft Computing, Volume 151, 2024. [Google Scholar]
  13. Salam Fraihat, Sharif Makhadmeh, Mohammed Awad, Mohammed Azmi Al-Betar, Anessa Al-Redhaei, Intrusion detection system for large-scale IoT NetFlow networks using machine learning with modified Arithmetic Optimization Algorithm, Internet of Things, Volume 22, 2023. [Google Scholar]
  14. Riahi Sfar, E. Natalizio, Y. Challal, and Z. Chtourou, A roadmap for security challenges in the Internet of )ings, Digital Communications and Networks, vol. 4, no. 2, pp. 118–137, 2018. [CrossRef] [Google Scholar]
  15. P. Podder, M.R.H. Mondal, S. Bharati, and P.K. Paul, Review on the security threats of internet of things, International Journal of Computer Application, vol. 176, no. 41, pp. 37–45, 2020. [CrossRef] [Google Scholar]
  16. B.B. Zarpelào, R.S. Miani, C.T. Kawakani, and S.C. de Alvarenga, A survey of intrusion detection in Internet of ings, Journal of Network and Computer Applications, vol. 84, pp. 5–37, 2017. [Google Scholar]
  17. Yaqoob, E. Ahmed, M.H. Rehman et al., The rise of ransomware and emerging security challenges in the Internet of Things, Computer Networks, vol. 129, pp. 444–458, 2017. [CrossRef] [Google Scholar]
  18. L. Buczak and E. Guven, A survey of data mining and machine learning methods for cyber security intrusion detection, IEEE Communications surveys & tutorials, vol. 18, no. 2, pp. 1153–1176, 2016. [CrossRef] [Google Scholar]
  19. P. Mishra, V. Varadharajan, U. Tupakula, and E.S. Pilli, A detailed investigation and analysis of using machine learning techniques for intrusion detection, IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 686–728, 2019. [CrossRef] [Google Scholar]
  20. Y. Otoum and A. Nayak, -On Securing IoT from Deep Learning Perspective, in Roceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, July 2020. [Google Scholar]
  21. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F.E. Alsaadi, -A survey of deep neural network architectures and their applications, Neurocomputing, vol. 133, pp. 11–26, 2017. [Google Scholar]
  22. M.A. Al-Garadi, A. Mohamed, A. Al-Ali, X. Du, I. Ali, and M. Guizani, -A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security, IEEE Communications Surveys & Tutorials, vol. 22, 2020. [Google Scholar]
  23. S. Zhang, L. Yao, A. Sun, and Y. Tay, -Deep learning-based recommender system: a survey and new perspectives, ACM Computing Surveys, vol. 52, no. 1, pp. 1–38, 2020. [Google Scholar]
  24. M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, -Deep learning for IoT big data and streaming analytics: a survey, IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2923–2960, 2018. [CrossRef] [Google Scholar]
  25. Butun, P. Osterberg, and H. Song, -Security of the internet of things: vulnerabilities, attacks, and counter measures, IEEE Communications Surveys & Tutorials, vol. 22, no. 1, pp. 616–644, 2020. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.