Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01036
Number of page(s) 15
DOI https://doi.org/10.1051/epjconf/202532801036
Published online 18 June 2025
  1. G. Cho, J. Yim, Y. Choi, J. Ko, S.-H. Lee, Review of machine learning algorithms for diagnosing mental illness. Psychiatry Investig 16, 262–269 (2019). [CrossRef] [PubMed] [Google Scholar]
  2. A.J. Xu, M.A. Flannery, Y. Gao, Y. Wu, Machine learning for mental health detection (2019) [Google Scholar]
  3. P. Morillo, H. Ortega, D. Chauca, J. Proano, D. Vallejo-Huanga, M. Cazares, Psychoweb: a machine learning platform for the diagnosis and classification of mental disorders. In: Advances in Neuroergonomics and Cognitive Engineering, 399–410 (Springer, Berlin, 2019). [Google Scholar]
  4. J. Chung, J. Teo, Mental Health Prediction Using Machine Learning: Taxonomy, Applications, and Challenges (2022). [Google Scholar]
  5. M.T.R. Ullas, M. Begom, A. Ahmed, R. Sultana, A machine learning approach to detect depression and anxiety using supervised learning (2019). [Google Scholar]
  6. U. Sairam, S. Voruganti, Mental health prediction using deep learning (2022). [Google Scholar]
  7. T. Jain, A. Jain, P.S. Hada, H. Kumar, V.K. Verma, A. Patni, Machine learning techniques for prediction of mental health. In: Proc. 2021 3rd Int. Conf. Inventive Res. Comput. Appl. (ICIRCA), 1606–1613 (IEEE, 2021). [CrossRef] [Google Scholar]
  8. V. Sapra, L. Sapra, A. Vishnoi, P. Narooka, T. Choudhury, Enhancing mental disorder diagnosis with ensemble bagging and random forest techniques. In: Proc. 2024 Int. Conf. Commun. Comput. Sci. Eng. (IC3SE), 1765–1769 (IEEE, 2024) [CrossRef] [Google Scholar]
  9. C.S.R. Balraj, P. Nagaraj, Prediction of mental health issues and challenges using hybrid machine and deep learning techniques. In: Proc. Int. Conf. Math. Comput., 15–27 (Springer Nature, Singapore, 2024) [Google Scholar]
  10. K. Rathi, M. Sharma, S. Jindal, S. Chauhan, Mental health disorder prediction using hybrid machine learning models. Mater. Today Proc. 80, 1459–1464 (2024). [Google Scholar]
  11. S. Roy, S. Dutta, Depression detection using machine learning and natural language processing: a review. Comput. Biol. Med. 160, 107383 (2024). [Google Scholar]
  12. A. Das, T. Basak, A. Roy, A survey on deep learning techniques for mental health prediction. J. King Saud Univ.-Comput. Inf. Sci. 36(2), 141–154 (2024). [Google Scholar]
  13. M.A. Islam, M. Hoque, S. Ahmed, Social media-based mental health prediction using deep learning approaches. IEEE Access 11, 15423–15435 (2023). [Google Scholar]
  14. H. Wang, X. Zhang, J. Li, Mental stress recognition using EEG and deep learning models. Biomed. Signal Process. Control 86, 104–294 (2023). [Google Scholar]
  15. J. Kim, Y. Kim, Machine learning-based prediction of depression and anxiety using digital phenotyping data. IEEE J. Biomed. Health Inform. 28(1), 56–64 (2024). [Google Scholar]
  16. D. Wang, X. Liu, H. Wang, Prediction of adolescent mental health status using ensemble deep learning methods. Comput. Methods Programs Biomed. 233, 107433 (2024). [Google Scholar]
  17. L. Li, Y. Gao, A. Wang, Transformer-based model for real-time mental health monitoring via text analysis. Expert Syst. Appl. 235, 121293 (2024). [Google Scholar]
  18. N. Gupta, R. Arora, Anxiety and stress prediction using smartphone sensor data and ML classifiers. J. Ambient Intell. Humaniz. Comput. 15, 1923–1935 (2024). [Google Scholar]
  19. Y. Chen, C. Sun, T. Zhang, Deep learning-based depression analysis from voice and facial expressions. Neural Comput. Appl. 36, 8215–8230 (2024). [Google Scholar]
  20. P. Kumar, S. Sinha, Mental health monitoring system using LSTM-based deep learning model. Proc. 2023 IEEE Int. Conf. Comput. Commun. (ICCC), 129–135 (IEEE, 2023). [Google Scholar]
  21. A. Sharma, M. Goyal, Mental health assessment framework using multimodal deep learning and wearable sensors. Comput. Biol. Med. 158, 106932 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.