Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01050 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/epjconf/202532801050 | |
Published online | 18 June 2025 |
- André Abade, Paulo Afonso Ferreira, Flavio de Barros Vidal "Plant diseases recognition on images using convolutional neural networks: A systematic review" Computers and Electronics in Agriculture Volume 185, June 2021, 106125. https://doi.org/10.1016/j.compag.2021.106125. [CrossRef] [Google Scholar]
- Ishrat Zahan Mukti; Dipayan Biswas, "Transfer Learning Based Plant Diseases Detection Using ResNet50", 10.1109/EICT48899.2019.9068805 [Google Scholar]
- Onisimo Mutanga, John Odindi, Timothy Dube, "Advancements in satellite remote sensing for mapping and monitoring of alien invasive plant species (AIPs)", Physics and Chemistry of the Earth, Parts A/B/C Volume 112, August 2019, https://doi.org/10.1016/j.pce.2018.12.004 [Google Scholar]
- Zifeng Wu, Chunhua Shen, Anton van den Hengel, "Wider or Deeper: Revisiting the ResNet Model for Visual Recognition", Pattern Recognition Volume 90, June 2019, https://doi.org/10.1016/j.patcog.2019.01.006 [Google Scholar]
- Riyad Ismail, Onisimo Mutanga, Kabir Peerbhay, "The identification and remote detection of alien invasive plants in commercial forests: An Overview", South African Journal of Geomatics Vol. 5 No. 1 (2016), 10.4314/sajg.v5i1.4 [Google Scholar]
- David E. Knapp, Ty Kennedy-Bowdoin, Matthew O. Jones, Roberta E. Martin, Joseph Boardman, R. Flint Hughes, "Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR" Remote Sensing of Environment Volume 112, Issue 5, 15 May 2008, https://doi.org/10.1016/j.rse.2007.11.01 [Google Scholar]
- Silva, S. et al, "Deep learning models for plant species identification: A comprehensive review and comparative study", Ecological Informatics 2021, https://doi.org/10.1016/j.ecoinf.2021.101337 [PubMed] [Google Scholar]
- Mohanty, S.P., Hughes, D.P., & Salathé, M., "Plant Disease Detection Using Transfer Learning and Convolutional Neural Network", Frontiers in Plant Science 2021, https://doi.org/10.3389/fpls.2021.710286 [Google Scholar]
- Lee, H., Park, J., & Kwon, H., "Automatic identification of plant species using deep learning-based leaf recognition", Journal of Plant Research 2022, https://doi.org/10.1007/s10265-022-01303-4 [Google Scholar]
- Wahab, N., Khan, M.A., & Ali, A., "Deep convolutional neural networks for automatic classification of plant traits from images", Computers and Electronics in Agriculture 2022, https://doi.org/10.1016/j.compag.2022.107295 [PubMed] [Google Scholar]
- Li, X., Wang, Y., & Zhang, L., "Application of deep learning for invasive species detection in UAV imagery", Remote Sensing 2021, https://doi.org/10.3390/rs13214203 [Google Scholar]
- Nhung Thi Cam Tran, Yago Diez, Alessandro Valletta, Andrea Segalini, Maximo Larry Lopez Caceres., "Plant Species Classification and Biodiversity Estimation from UAV Images with Deep Learning", Remote Sensing 2024, https://www.mdpi.com/doi/10.3390/rs16193654 [Google Scholar]
- S. Natesan, C. Armenakis, U. Vepakomma, "Resnet-Based Tree Species Classification Using UAV Images", the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2019, https://isprs-archives.copernicus.org/articles/XLII-2-W13/475/2019/ [Google Scholar]
- Camargo P. Charles, Pedro Henrique Correa Kim, Aline Gabriel de Almeida, Eduardo Vieira Do Nascimentok, "Detection of invasive vegetation through UAV and Deep Learning", IEEE Conference Proceedings 2023, 10.1109/LARS/SBR/WRE54079.2021.9605371 [Google Scholar]
- Du, S., Yang, Y., Yuan, H., & Cheng, M. (2025). Application of deep learning for real-time detection, localization, and counting of the malignant invasive weed Solanum rostratum Dunal. Frontiers in Plant Science, 15, 1486929. https://doi.org/10.3389/fpls.2024.1486929 [CrossRef] [PubMed] [Google Scholar]
- Rajakani, M., & Kavitha, R.J. (2024). Invasive weed optimization with deep transfer learning for multispectral image classification model. Multimedia Tools and Applications, 83, 45519-45534. https://doi.org/10.1007/s11042-023-17429-9 [Google Scholar]
- Gevaert, C.M., Pedro, A.A., Ku, O., Cheng, H., Chandramouli, P., Javan, F.D., Nattino, F., & Georgievska, S. (2024). Explainable few-shot learning workflow for detecting invasive and exotic tree species. arXiv preprint arXiv:2411.00684. https://arxiv.org/abs/2411.00684 [Google Scholar]
- Doherty, K., Gurinas, M., Samsoe, E., Casper, C., Larkin, B., Ramsey, P., Trabucco, B., & Salakhutdinov, R. (2024). Leafy Spurge Dataset: Real-world weed classification within aerial drone imagery. arXiv preprint arXiv:2405.03702. https://arxiv.org/abs/2405.03702 [Google Scholar]
- Thürkow, F., Lorenz, C.G., Pause, M., & Birger, J. (2024). Advanced detection of invasive neophytes in agricultural landscapes: A multisensory and multiscale remote sensing approach. Remote Sensing, 16(3), 500. https://doi.org/10.3390/rs16030500 [CrossRef] [Google Scholar]
- Karthik, K., & Valli, S. (2023). Automated detection and classification of weed species using deep CNN with hyperspectral imagery. Ecological Informatics, 75, 102074. https://doi.org/10.1016/j.ecoinf.2023.102074 [CrossRef] [Google Scholar]
- Zhang, Q., Wang, H., Li, F., & Li, Y. (2023). Deep learning for plant disease detection and biodiversity monitoring: A comprehensive review. Biosystems Engineering, 227, 124-138. https://doi.org/10.1016/j.biosystemseng.2023.01.010 [Google Scholar]
- Elhariri, E., Zawbaa, H.M., & Eldeib, A.M. (2023). Deep convolutional features for accurate plant identification and classification of invasive species. Pattern Recognition Letters, 168, 81-89. https://doi.org/10.1016/j .patrec.2023.01.015 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.