Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01059 | |
Number of page(s) | 15 | |
DOI | https://doi.org/10.1051/epjconf/202532801059 | |
Published online | 18 June 2025 |
- D'Adderio, L., Bates, D.W. Transforming diagnosis through artificial intelligence. npj Digit. Med. 8, 54 (2025). https://doi.org/10.1038/s41746-025-01460-1 [CrossRef] [Google Scholar]
- Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. IEEE CVPR (2017) [Google Scholar]
- Washko GR. Diagnostic imaging in COPD. Semin Respir Crit Care Med. (2010) Jun;31(3):276-85. DOI: 10.1055/s-0030-1254068. Epub 2010 May 21. PMID: 20496297; PMCID: PMC4334134. [CrossRef] [PubMed] [Google Scholar]
- Rubin GD, Ryerson CJ. The Role of Chest Imaging in Patient Management During the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Chest. (2020) Jul;158(1):106-116. DOI: 10.1016/j.chest.2020.04.003. Epub 2020 Apr 7. PMID: 32275978; PMCID: PMC7138384. [CrossRef] [Google Scholar]
- Massimo Salvi, Hui Wen Loh, Silvia Seoni, Prabal Datta Barua, Salvador Garcia, Filippo Molinari, and U. Rajendra Acharya. 2024. Multi-modality approaches for medical support systems: A systematic review of the last decade. Inf. Fusion 103, C (Mar 2024). https://doi.org/10.1016/j.inffus.2023.102134 [Google Scholar]
- M. Kumar, N.A. Shelke, J. Singh, K.N. Sharma, R. Sharma and R. Kumar, "A Multimodal Deep Learning Approach for Advancing Liver Disease Diagnosis and Prognosis Prediction," 2024 International Conference on IoT, Communication and Automation Technology (ICICAT), Gorakhpur, India, 2024, pp. 838-843, https://doi.org/10.1109/ICICAT62666.2024.10923423 [Google Scholar]
- T. Dimakatso, V. Kuthadi, R. Selvaraj and O. Dinakenyane, "Pragmatic Review on Progressions in Multimodal Disease Prediction with Combination of Machine Learning, Deep Learning and Electronic Health Records," 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), Indore, India, 2024, pp. 1-7, https://doi.org/10.1109/ICTBIG64922.2024.10911239 [Google Scholar]
- Moshawrab, M.; Adda, M.; Bouzouane, A.; Ibrahim, H.; Raad, A. Reviewing Multimodal Machine Learning and Its Use in Cardiovascular Diseases Detection. Electronics 2023, 12, 1558. https://doi.org/10.3390/electronics12071558 [CrossRef] [Google Scholar]
- Lee, Y.C., Cha, J., Shim, I. et. al. Multimodal deep learning of fundus abnormalities and traditional risk factors for cardiovascular risk prediction. npj Digit. Med. 6, 14 (2023). https://doi.org/10.1038/s41746-023-00748-4 [CrossRef] [Google Scholar]
- Fatemeh Behrad, Mohammad Saniee Abadeh, An overview of deep learning methods for multimodal medical data mining, Expert Systems with Applications, Volume 200, (2022), 117006, ISSN 0957-4174 [CrossRef] [Google Scholar]
- Rani, G., Oza, M.G., Dhaka, V.S. et. al. Applying deep learning-based multi-modal for detection of coronavirus. Multimedia Systems 28, 1251-1262 (2022). https://doi.org/10.1007/s00530-021-00824-3 [CrossRef] [PubMed] [Google Scholar]
- Amal Saeed, Safarnejad Lida, Omiye Jesutofunmi A., Ghanzouri Ilies, Cabot John Hanson, Ross Elsie Gyang, Use of Multi-Modal Data and Machine Learning to Improve Cardiovascular Disease Care, Frontiers in Cardiovascular Medicine, Volume 9, (2022), ISSN=2297-055X, https://doi.org/10.3389/fcvm.2022.840262 [PubMed] [Google Scholar]
- Qiu, S., Miller, M.I., Joshi, P.S. et. al. Multimodal deep learning for Alzheimer's disease dementia assessment. Nat Commun 13, 3404 (2022). https://doi.org/10.1038/s41467-022-31037-5 [CrossRef] [PubMed] [Google Scholar]
- Lee, S.J., Rho, M. Multimodal deep learning applied to classify healthy and disease states of human microbiome. Sci Rep 12, 824 (2022). https://doi.org/10.1038/s41598-022-04773-3 [CrossRef] [PubMed] [Google Scholar]
- Pang, Z., Wang, X., Wang, X. et. al. A Multi-modal Data Platform for Diagnosis and Prediction of Alzheimer's Disease Using Machine Learning Methods. Mobile Netw Appl 26, 2341-2352 (2021). https://doi.org/10.1007/s11036-021-01834-1 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.