Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01066 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/epjconf/202532801066 | |
Published online | 18 June 2025 |
- Chen, J., Yan, H., Liu, Z., Zhang, M., Xiong, H., & Yu, S. (2024). When federated learning meets privacy-preserving computation. ACM Computing Surveys, 5(5(12), 1-36. [Google Scholar]
- Xie, Q., Jiang, S., Jiang, L., Huang, Y., Zhao, Z., Khan, S., … & Wu, K. (2024). Efficiency optimization techniques in privacy-preserving federated learning with homomorphic encryption: A brief survey. IEEE Internet of Things Journal, 11(14), 24569-24580. [CrossRef] [Google Scholar]
- Pati, S., Kumar, S., Varma, A., Edwards, B., Lu, C., Qu, L., … & Bakas, S. (2024). Privacy preservation for federated learning in health care. Patterns, 5(7). [Google Scholar]
- Yazdinejad, A., Dehghantanha, A., Karimipour, H., Srivastava, G., & Parizi, R.M. (2024). A robust privacy-preserving federated learning model against model poisoning attacks. IEEE Transactions on Information Forensics and Security. [Google Scholar]
- Yazdinejad, A., Dehghantanha, A., Srivastava, G., Karimipour, H., & Parizi, R.M. (2024). Hybrid privacy preserving federated learning against irregular users in next-generation Internet of Things. Journal of Systems Architecture, 148, 103088. [CrossRef] [Google Scholar]
- Yang, M., Huang, D., & Zhan, X. (2024). Federated learning for privacy-preserving medical data sharing in drug development. TBD. [Google Scholar]
- Bukhari, S.M.S., Zafar, M.H., Abou Houran, M., Moosavi, S.K.R., Mansoor, M., Muaaz, M., & Sanfilippo, F. (2024). Secure and privacy-preserving intrusion detection in wireless sensor networks: Federated learning with SCNN-Bi-LSTM for enhanced reliability. Ad Hoc Networks, 155, 103407. [CrossRef] [Google Scholar]
- Rafi, T.H., Noor, F.A., Hussain, T., & Chae, D.K. (2024). Fairness and privacy preserving in federated learning: A survey. Information Fusion, 105, 102198. [CrossRef] [Google Scholar]
- Soltan, A.A., Thakur, A., Yang, J., Chauhan, A., D'Cruz, L.G., Dickson, P., … & Clifton, D.A. (2024). A scalable federated learning solution for secondary care using low-cost microcomputing: privacy-preserving development and evaluation of a COVID-19 screening test in UK hospitals. The Lancet Digital Health, 5(2), e93-e104. [CrossRef] [PubMed] [Google Scholar]
- Alebouyeh, Z., & Bidgoly, A.J. (2024). Benchmarking robustness and privacy-preserving methods in federated learning. Future Generation Computer Systems, 155, 18-38. [CrossRef] [Google Scholar]
- Rabieinejad, E., Yazdinejad, A., Dehghantanha, A., & Srivastava, G. (2024). Two-level privacy-preserving framework: Federated learning for attack detection in the consumer internet of things. IEEE Transactions on Consumer Electronics. [Google Scholar]
- Pan, Y., Chao, Z., He, W., Jing, Y., Hongjia, L., & Liming, W. (2024). FedSHE: privacy preserving and efficient federated learning with adaptive segmented CKKS homomorphic encryption. Cybersecurity, 7(1), 40. [CrossRef] [Google Scholar]
- Wang, R., Yuan, X., Yang, Z., Wan, Y., Luo, M., & Wu, D. (2024). RFLPV: A robust federated learning scheme with privacy preservation and verifiable aggregation in IoMT. Information Fusion, 102, 102029. [CrossRef] [Google Scholar]
- Ali, W., Zhou, X., & Shao, J. (2025). Privacy-preserved and responsible recommenders: From conventional defense to federated learning and blockchain. ACM Computing Surveys, 57(5), 1-35. [CrossRef] [Google Scholar]
- Chen, S., & Huang, Y. (2025). A privacy-preserving federated learning approach for airline upgrade optimization. Journal of Air Transport Management, 122, 102693. [CrossRef] [Google Scholar]
- Wu, J., Zhang, J., Bilal, M., Han, F., Victor, N., & Xu, X. (2024). A federated deep learning framework for privacy-preserving consumer electronics recommendations. IEEE Transactions on Consumer Electronics, 70(1), 2628-2638. https://doi.org/10.1109/TCE.2023.3325138 [CrossRef] [Google Scholar]
- Alqhatani, A., & Khan, S.B. (2024). IoT-driven hybrid deep collaborative transformer with federated learning for personalized e-commerce recommendations: An optimized approach. Scalable Computing: Practice and Experience, 25(5), 3408-3426. [CrossRef] [Google Scholar]
- Wei, P., Dou, H., Liu, S., Tang, R., Liu, L., Wang, L., & Zheng, B. (2023, July). FedAds: A benchmark for privacy-preserving CVR estimation with vertical federated learning. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, 3037-3046. [Google Scholar]
- Liu, Z., Guo, J., Yang, W., Fan, J., Lam, K.-Y., & Zhao, J. (2022). Privacy-preserving aggregation in federated learning: A survey. IEEE Transactions on Big Data. https://doi.org/10.1109/TBDATA.2022.3190835 [Google Scholar]
- Wang, L.-e., Wang, Y., Bai, Y., Liu, P., & Li, X. (2021). POI recommendation with federated learning and privacy preserving in cross-domain recommendation. IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 1-6. https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484510 [Google Scholar]
- Li, J., Cui, T., Yang, K., Yuan, R., He, L., & Li, M. (2021). Demand forecasting of e-commerce enterprises based on horizontal federated learning from the perspective of sustainable development. Sustainability, 13(23), 13050. [CrossRef] [Google Scholar]
- Cheng, Y., Liu, Y., Chen, T., & Yang, Q. (2020). Federated learning for privacy-preserving AI. Communications of the ACM, 63(12), 33-36. [CrossRef] [Google Scholar]
- Kanagavelu, R., et. al. (2020). Two-phase multi-party computation enabled privacy-preserving federated learning. 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, VIC, Australia, 410419. https://doi.org/10.1109/CCGrid49817.2020.00-52 [Google Scholar]
- Abadi, A., Doyle, B., Gini, F., Guinamard, K., Murakonda, S.K., Liddell, J., … & Weller, S. (2024). Starlit: Privacy-preserving federated learning to enhance financialfraud detection. arXiv preprint arXiv:2401. 10765. [Google Scholar]
- Haseeb, A., Ekerete, I., & Moore, S. (2024, November). A privacy-preserving federated learning framework for financial crime. In International Conference on Ubiquitous Computing and Ambient Intelligence (pp. 743-754). Springer Nature Switzerland. [Google Scholar]
- He, P., Lin, C., & Montoya, I. (2024). DPFedBank: Crafting a privacy-preserving federated learning frameworkforfinancial institutions with policy pillars. arXiv preprint arXiv:2410.13753. [Google Scholar]
- Khan, M.S.I., Gupta, A., Seneviratne, O., & Patterson, S. (2024). Fed-RD: Privacy-preserving federated learning for financial crime detection. 2024 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics (CIFEr), Hoboken, NJ, USA, 1-9. https://doi.org/10.1109/CIFEr62890.2024.10772978 [Google Scholar]
- Arora, S., Beams, A., Chatzigiannis, P., Meiser, S., Patel, K., Raghuraman, S., … & Zamani, M. (2023). Privacy-preserving financial anomaly detection via federated learning & multi-party computation. arXiv preprint arXiv:2310.04546. [Google Scholar]
- Kadhe, S.R., Ludwig, H., Baracaldo, N., King, A., Zhou, Y., Houck, K., … & Soceanu, O. (2023). Privacy-preserving federated learning over vertically and horizontally partitioned data for financial anomaly detection. arXiv preprint arXiv:2310.19304. [Google Scholar]
- Zhang, H., Hong, J., Dong, F., Drew, S., Xue, L., & Zhou, J. (2023). A privacy-preserving hybrid federated learning frameworkforfinancial crime detection. arXiv preprint arXiv:2302.03654. [Google Scholar]
- Kanamori, S., Abe, T., Ito, T., Emura, K., Wang, L., Yamamoto, S., … & Moriai, S. (2022). Privacy-preserving federated learning for detecting fraudulent financial transactions in Japanese banks. Journal of Information Processing, 30, 789-795. [Google Scholar]
- Byrd, D., & Polychroniadou, A. (2020, October). Differentially private secure multi-party computation for federated learning in financial applications. In Proceedings of the First ACM International Conference on AI in Finance (pp. 1-9). [Google Scholar]
- Li, Z., Sharma, V., & Mohanty, S.P. (2020). Preserving data privacy via federated learning: Challenges and solutions. IEEE Consumer Electronics Magazine, 9(3), 8-16. https://doi.org/10.1109/MCE.2019.2959108 [Google Scholar]
- Chaddad, Y., Wu, Y., & Desrosiers, C. (2024). Federated learning for healthcare applications. IEEE Internet of Things Journal, 11(5), 7339-7358. https://doi.org/10.1109/JIOT.2023.3325822 [CrossRef] [Google Scholar]
- Moon, S., & Lee, W.H. (2023). Privacy-preserving federated learning in healthcare. 2023 International Conference on Electronics, Information, and Communication (ICEIC), 1-4. https://doi.org/10.1109/ICEIC57457.2023.10049966 [Google Scholar]
- Ali, M., Naeem, F., Tariq, M., & Kaddoum, G. (2023). Federated learning for privacy preservation in smart healthcare systems: A comprehensive survey. IEEE Journal of Biomedical and Health Informatics, 27(2), 778-789. https://doi.org/10.1109/JBHI.2022.3181823 [36] [CrossRef] [PubMed] [Google Scholar]
- Aouedi, O., Sacco, A., Piamrat, K., & Marchetto, G. (2023). Handling privacy-sensitive medical data with federated learning: Challenges and future directions. IEEE Journal of Biomedical and Health Informatics, 27(2), 790-803. https://doi.org/10.1109/JBHI.2022.3185673 [CrossRef] [PubMed] [Google Scholar]
- Firdaus, M., & Rhee, K.-H. (2023). Towards trustworthy collaborative healthcare data sharing. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 4059-4064. https://doi.org/10.1109/BIBM58861.2023.10385319 [CrossRef] [Google Scholar]
- Islam, T.U., Ghasemi, R., & Mohammed, N. (2022). Privacy-preserving federated learning model for healthcare data. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), 0281-0287. https://doi.org/10.1109/CCWC54503.2022.9720752 [CrossRef] [Google Scholar]
- Narmadha, K., & Varalakshmi, P. (2022). Federated learning in healthcare: A privacy-preserving approach. In Challenges of Trustable AI and Added-Value on Health (pp. 194-198). IOS Press. [Google Scholar]
- Chowdhury, A., Kassem, H., Padoy, N., Umeton, R., & Karargyris, A. (2021). A review of medical federated learning: Applications in oncology and cancer research. In International MICCAI Brainlesion Workshop (pp. 3-24). Springer International Publishing. [Google Scholar]
- Pfitzner, B., Steckhan, N., & Arnrich, B. (2021). Federated learning in a medical context: A systematic literature review. ACM Transactions on Internet Technology (TOIT), 21(2), 1-31. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.