Open Access
Issue
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
Article Number 03012
Number of page(s) 6
Section Power Systems, Renewable Energy Systems, and Smart Grids
DOI https://doi.org/10.1051/epjconf/202533003012
Published online 30 June 2025
  1. P.W. Sauer, M.A. Pai, J.H. Chow, Power system dynamics and stability, (2nd ed. Hoboken, John Wiley & Sons, NJ 2018) [Google Scholar]
  2. Stability definitions and characterization of dynamic behavior of systems with high penetration of power electronic interfaced technologies. IEEE Power System Dynamic Performance Committee, PES-TR77, IEEE PES; [Google Scholar]
  3. A.B. Birchfield, T.J. Overbye, A Review on Providing Realistic Electric Grid Simulations for Academia and Industry. Curr Sustainable Renewable Energy Rep 10, 154–161 (2023). https://doi.org/10.1007/s40518-023-00212-7 [CrossRef] [Google Scholar]
  4. R. Ahmadi Ahangar, A. Rosin, A.N. Niaki, I. Palu, T. Korõtko, A review on real-time simulation and analysis methods of microgrids. Int Trans Electr Energ Syst, 29, e12106 (2019). https://doi.org/10.1002/2050-7038.12106 [Google Scholar]
  5. Y. Pan, M. Zhu, Y. Lyu, Y. Yang, Building energy simulation and its application for building performance optimization: A review of methods, tools, and case studies, Advances in Applied Energy, 10, 100135 (2023) [CrossRef] [Google Scholar]
  6. C. Chen, J. Wang, F. Qiu, D. Zhao Resilient distribution system by microgrids formation after natural disasters IEEE Trans Smart Grid, 7(2), 958-966 (2016) [CrossRef] [Google Scholar]
  7. G. Chen, Z.Y. Dong, D.J. Hill, G.H. Zhang, An improved model for structural vulnerability analysis of power networks Phys A Stat Mech Appl, 388(19), 4259-4266 (2009), [CrossRef] [Google Scholar]
  8. E. Bonabeau Agent-based modeling: methods and techniques for simulating human systems Proc Natl Acad Sci, 99 (3), 7280-7287 (2020) [Google Scholar]
  9. J. Wang, W. Zuo, L. Rhode-Barbarigos, X. Lu, J. Wang, Y. Lin, Literature review on modeling and simulation of energy infrastructures from a resilience perspective, Reliability Engineering & System Safety, 183, 360-373 (2019) [CrossRef] [Google Scholar]
  10. M.S. Sadabadi, Q. Shafiee, and A. Karimi, Plug- and-Play Robust Voltage Control of DC Microgrids, IEEE Trans. on Smart Grid, 9(6) (2018) [Google Scholar]
  11. S. Amirkhana, M. Radmehrb, M. Rezanejadc, S. Khormali, A robust control technique for stable operation of a DC/AC hybrid microgrid under parameters and loads variations, Electrical Power and Energy Systems, 117 (2020) [Google Scholar]
  12. X. Jin, Y. Shen, Q. Zhou, A systematic review of robust control strategies in DC microgrids, The Electricity Journal, 35 (2022) [Google Scholar]
  13. F. Mohammadi, B. Mohammadi-Ivatloo, G. B. Gharehpetian, M. H. Ali, W. Wei, O. Erdinç, M. Shirkhani, Robust Control Strategies for Microgrids: A Review, IEEE Systems Journal, 16(2), (2022) [Google Scholar]
  14. L.F.N. Delboni, D. Marujo, P.P. Balestrassi, D.Q. Oliveira, Electrical Power Systems: Evolution from Traditional Configuration to Distributed Generation and Mi-crogrids. Microgrids Design and Implementation, (Springer, Cham., 2019) [Google Scholar]
  15. J. A. Villanueva-Rosario, F. Santos-García, M. Euclides A.-Mejía, P. Mendoza-Araya, A. Molina-García, Coordinated ancillary services, market participation and communi-cation of multi-microgrids: A review, Applied Energy, 308 (2022) [Google Scholar]
  16. G. S. Thirunavukkarasu, M. Seyedmahmoudian, E. Jamei, B. Horan, S. Mekhilef, A. Stojcevski, Role of optimization techniques in microgrid energy management systems—A review, Energy Strategy Reviews, 43 (2022) [Google Scholar]
  17. M.S. Bakare, A. Abdulkarim, M. Zeeshan, M., A comprehensive overview on demand side energy management towards smart grids: challenges, solutions, and future direction. Energy Inform, 6(4) (2023) [CrossRef] [Google Scholar]
  18. R. G. Allwyn, A. Al-Hinai, V. Margaret, A comprehensive review on energy management strategy of microgrids, Energy Reports, 9, 5565-5591 (2023) [CrossRef] [Google Scholar]
  19. P.L. Querini, O. Chiotti, E. Fernádez, Cooperative energy management system for networked microgrids, Sustainable Energy, Grids and Networks, 23, 100371 (2020) [CrossRef] [Google Scholar]
  20. B. Goia, T. Cioara, I. Anghel, Virtual Power Plant Optimization in Smart Grids: A Narrative Review. Future Internet, 14, 128 (2022) [CrossRef] [Google Scholar]
  21. W. Chang, Q. Yang, Low carbon oriented collaborative energy management framework for multi-microgrid aggregated virtual power plant considering electricity trading, Applied Energy, 351, (2023) [Google Scholar]
  22. S. Mishra, C. Bordin, M. Leinakse, F. Wen, R.J. Howlett, I. Palu, Virtual Power Plants and Integrated Energy System: Current Status and Future Prospects. In: Fathi, M., Zio, E., Pardalos, P.M. (eds) Handbook of Smart Energy Systems. Springer, Cham (2023) [Google Scholar]
  23. T. Cioara, M. Antal, V. T. Mihailescu, C. D. Antal, I. M. Anghel and D. Mitrea, Blockchain-Based Decentralized Virtual Power Plants of Small Prosumers, in IEEE Access, 9, 29490-29504 [Google Scholar]
  24. F. H. Aghdam, M. S. Javadi, J. P.S. Catalão, Optimal stochastic operation of technical virtual power plants in reconfigurable distribution networks considering contingencies, International Journal of Electrical Power & Energy Systems, 147 (2023) [Google Scholar]
  25. D. Zhu, B. Yang, Q. Liu, K. Ma, S. Zhu, C. Ma, X. Guan, Energy trading in microgrids for synergies among electricity, hydrogen and heat networks, Applied Energy, 272 (2020) [Google Scholar]
  26. C. Pop, T. Cioara, M. Antal, I. Anghel, I. Salomie and M. Bertoncini, Blockchain Based Decentralized Management of Demand Response Programs in Smart Energy Grids, Sensors, 18(1), 162 (2018) [CrossRef] [Google Scholar]
  27. P. Wongthongtham, D. Marrable, B. Abu-Salih, X. Liu, G. Morrison, Blockchain-enabled Peer-to-Peer energy trading, Computers & Electrical Engineering, 94 (2021) [Google Scholar]
  28. Verma, P., O’Regan, B., Hayes, B. et al. EnerPort: Irish Blockchain project for peer- to-peer energy trading. Energy Inform 1, 14 (2018). [CrossRef] [Google Scholar]
  29. Gärttner, Johannes & Mengelkamp, Esther & Weinhardt, Christof, Decentralizing Energy Systems Through Local Energy Markets: The LAMP-Project (2018) [Google Scholar]
  30. Loni and F. -A. Parand, A survey of game theory approach in smart grid with emphasis on cooperative games, 2017 IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), Singapore, 237-242 (2017) [Google Scholar]
  31. Wang, N.; Xu, W.; Xu, Z.; Shao, W. Peer-to-Peer Energy Trading among Microgrids with Multidimensional Willingness. Energies, 11, 3312, (2018) [CrossRef] [Google Scholar]
  32. M. Saatloo, M. A. Mirzaei and B. Mohammadi-Ivatloo, A Robust Decentralized Peer-to-Peer Energy Trading in Community of Flexible Microgrids, in IEEE Systems Journal, 17(1), 640-651, (2023) [CrossRef] [Google Scholar]
  33. J. Wu, P. Zhao, L. Li, F. Shi, B. Li, Multi- microgrids distributed peer-to-peer energy trading in distribution system considering uncertainty risk, International Journal of Electrical Power & Energy Systems, 152, (2023) [Google Scholar]
  34. W. Saad, Z. Han and H. V. Poor, Coalitional Game Theory for Cooperative Micro-Grid Distribution Networks, IEEE International Conference on Communications Workshops (ICC), pp. 1-5, (2011) [Google Scholar]
  35. R. Mauger, Defining microgrids: from technology to law, Journal of Energy & Natural Resources Law, 43(3), 287-304, (2023) [CrossRef] [Google Scholar]
  36. T&D Europe, https://gimelec.fr/wp-content/uploads/2019/05/TDEurope- brochure_microgrids_web-min.pdf [Google Scholar]
  37. A. Ali, W. Li, R. Hussain, X. He, B.W. Williams, A.H. Memon, Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China, Sustainability, 9(7), 1-28, (2017) [Google Scholar]
  38. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001, last accessed 2023/12/18 [Google Scholar]
  39. Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency, https://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32018L2002 &rid=7, last accessed 2023/12/18 [Google Scholar]
  40. Regulation (EU) 2018/1999 of the European Parliament and of the Council of 11 December 2018 on the Governance of the Energy Union and Climate Action, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1999, last accessed 2023/12/20 [Google Scholar]
  41. Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0943, last accessed 2023/12/20 [Google Scholar]
  42. Directive (EU) 2019/944 943 of the European Parliament and of the Council of 5 June 2019 on common rules for the internal market for electricity and amending Directive 2012/27/EU, https://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32019L0944, last accessed 2023/12/20 [Google Scholar]
  43. Eurostat, Euro area annual inflation up to 10.7%, https://ec.europa.eu/eurostat/web/products-euro-indicators/-/2-31102022-ap (2022) [Google Scholar]
  44. European Parliament, Energy poverty in the EU, (2022), https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/733583/EPRS_BRI(2022)733583_EN.pdf [Google Scholar]
  45. F. Belaïd, Implications of poorly designed climate policy on energy poverty: global reflections on the current surge in energy prices, Energy Res. Soc. Sci., 92, 102790 (2022) [CrossRef] [Google Scholar]
  46. K. Drescher, B. Janzen: Determinants, persistence, and dynamics of energy poverty: an empirical assessment using German household survey data, Energy Econ., 102, 105433 (2021) [CrossRef] [Google Scholar]
  47. L. Karpinska, S. Śmiech: Multiple faces of poverty. Exploring housing-costs-induced energy poverty in Central and Eastern Europe, Energy Research & Social Science, 105, 103273, (2023), https://doi.org/10.1016/j.erss.2023.103273 [CrossRef] [Google Scholar]
  48. M. Cyrek, P. Cyrek, Rural Specificity as a Factor Influencing Energy Poverty in European Union Countries. Energies, 15, 5463 (2022), https://doi.org/10.3390/en15155463 [CrossRef] [Google Scholar]
  49. A. Rodriguez-Alvarez, M. Llorca, T. Jamasb, Alleviating energy poverty in Europe: Front-runners and laggards, Energy Economics, 103, https://doi.org/10.1016/j.eneco.2021.105575 [Google Scholar]
  50. International Energy Agency, World Energy Employment 2023, https://iea.blob.core.windows.net/assets/ba1eab3e-8e4c-490c-9983-80601fa9d736/World_Energy_Employment_2023. pdf [Google Scholar]
  51. International Renewable Energy Agency, Renewable Energy and Jobs Annual Review (2023), https://www.ilo.org/wcmsp5/groups/public/---dgreports/dcomm/documents/publication/wcms_895772.pdf [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.