Open Access
Issue
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
Article Number 03014
Number of page(s) 6
Section Power Systems, Renewable Energy Systems, and Smart Grids
DOI https://doi.org/10.1051/epjconf/202533003014
Published online 30 June 2025
  1. Kumar, D. S., Yagli, G. M., Kashyap, M., & Srinivasan, D. (2020). Solar irradiance resource and forecasting: a comprehensive review. IET Renewable Power Generation, 14(10), 1641-1656. [CrossRef] [Google Scholar]
  2. Wu, Y. K., Huang, C. L., Phan, Q. T., & Li, Y. Y. (2022). Completed review of various solar power forecasting techniques considering different viewpoints. Energies, 15(9), 3320. [CrossRef] [Google Scholar]
  3. Khan, W., Walker, S., & Zeiler, W. (2022). Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy, 240, 122812. [CrossRef] [Google Scholar]
  4. El Hammoumi, A., Chtita, S., Motahhir, S., & El Ghzizal, A. (2022). Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports, 8, 11992-12010. [CrossRef] [Google Scholar]
  5. Theocharides, Spyros, Makrides, George, Livera, Andreas, Theristis, Marios, Kaimakis, Paris, and Georghiou, George E. Day-ahead. (2020). photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. United States: N. p., Web. doi:10.1016/j.apenergy.2020.115023. [Google Scholar]
  6. So, D., Oh, J., Leem, S., Ha, H., & Moon, J. (2023). A Hybrid Ensemble Model for Solar Irradiance Forecasting: Advancing Digital Models for Smart Island Realization. Electronics, 12(12), 2607. [CrossRef] [Google Scholar]
  7. Aslam, A., Ahmed, N., Qureshi, S. A., Assadi, M., & Ahmed, N. (2022). Advances in solar PV systems; A comprehensive review of PV performance, influencing factors, and mitigation techniques. Energies, 15(20), 7595. [CrossRef] [Google Scholar]
  8. Rahman, M. M., Hasanuzzaman, M., & Rahim, N. A. (2015). Effects of various parameters on PV-module power and efficiency. Energy Conversion and Management, 103, 348-358. [CrossRef] [Google Scholar]
  9. Chaibi, Y., Allouhi, A., Malvoni, M., Salhi, M., & Saadani, R. (2019). Solar irradiance and temperature influence on the photovoltaic cell equivalent-circuit models. Solar Energy, 188, 1102-1110. [CrossRef] [Google Scholar]
  10. Paletta, Q., Terrén-Serrano, G., Nie, Y., Li, B., Bieker, J., Zhang, W., & Feng, C. (2023). Advances in solar forecasting: Computer vision with deep learning. Advances in Applied Energy, 100150. [Google Scholar]
  11. Sudharshan, K., Naveen, C., Vishnuram, P., Krishna Rao Kasagani, D. V. S., & Nastasi, B. (2022). Systematic review on impact of different irradiance forecasting techniques for solar energy prediction. Energies, 15(17), 6267. [CrossRef] [Google Scholar]
  12. Pei, Tingting; Hao, Xiaohong (2019). A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation. Energies, 12(9), 1712 [CrossRef] [Google Scholar]
  13. X. Ma, S. Bader and B. Oelmann, 2021. On the Performance of the Two-Diode Model for Photovoltaic Cells Under Indoor Artificial Lighting, in IEEE Access, vol. 9, pp. 1350-1361, doi: 10.1109/ACCESS.2020.3047158. [CrossRef] [Google Scholar]
  14. Alsafasfeh, Qais. (2020). An Efficient Algorithm for Power Prediction in PV Generation System. International Journal of Renewable Energy Development, 9(2), 207–216. [CrossRef] [Google Scholar]
  15. Asbayou A, Aamoume A, Elyaqouti M, Ihlal A, Bouhouch L. ‘Benchmarking study between capacitive and electronic load technic to track I-V and P-V of a solar panel”. 2022;12(1):102-113. DOI: 10.11591/ijece. [Google Scholar]
  16. Zhu, Y., & Xiao, W. (2020). A comprehensive review of topologies for photovoltaic I–V curve tracer. Solar Energy, 196, pp 346–357. [CrossRef] [Google Scholar]
  17. Sarikh S., Raoufi, M., Bennouna, A., Benlarabi, A., & Ikken, B. (2020), Implementation of a plug and play I-V curve tracer dedicated to characterization and diagnosis of PV modules under real operating conditions. Energy Conversion and Management, 209, 112613. [CrossRef] [Google Scholar]
  18. Yadir S., Bendaoud, R., EL-Abidi, A., Amiry, H., Benhmida, M., et al. (2020). Evolution of the physical parameters of photovoltaic generators as a function of temperature and irradiance: New method of prediction based on the manufacturer’s datasheet. Energy Conversion and Management, 203, 112141. [CrossRef] [Google Scholar]
  19. Spertino F., J. Ahmad, A. Ciocia, P. Di, A. F. Murtaza, M. Chiaberge, (2015). Capacitor charging method for I–V curve tracer and MPPT in photovoltaic systems, Sol. Energy, 119, pp. 461-473, [CrossRef] [Google Scholar]
  20. Cotfas D. T., P. A. Cotfas, D. Ursutiu, C. Samoila, (2010). Current-Voltage Characteristic Raising Techniques for Solar Cells. Comparisons and Applications, 12th International Conference on Optimization of Electrical and Electronic Equipment, Romania, 20-22 May, pp. 1115-1120. [Google Scholar]
  21. Chen Z., Lin W., L. Wu, C. Long, P. Lin, et al. (2018). A capacitor based fast I-V characteristics tester for photovoltaic arrays, Energy Procedia, 145, pp. 381-387, [CrossRef] [Google Scholar]
  22. Kazem, H. A., Al-Waeli, A. H., Chaichan, M. T., & Sopian, K. (2022). Modeling and experimental validation of dust impact on solar cell performance. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-17. [Google Scholar]
  23. Rasheed, M., Shihab, S., & Rashid, T. (2021). Two Step and Newton-Raphson Algorithms in the Extraction for the Parameters of Solar Cell. Al-Qadisiyah Journal Of Pure Science, 26(1), pp 143-154. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.