Open Access
Issue |
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 7 | |
Section | Power Quality Monitoring and Fault Diagnostic | |
DOI | https://doi.org/10.1051/epjconf/202533005003 | |
Published online | 30 June 2025 |
- P. Gangsar and R. Tiwari, ‘Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review’, Mechanical Systems and Signal Processing, vol. 144, p. 106908, Oct. 2020, doi: https://doi.org/10.1016/j.ymssp.2020.106908 [CrossRef] [Google Scholar]
- S. Zolfaghari, S. Noor, M. Rezazadeh Mehrjou, M. Marhaban, and N. Mariun, ‘Broken Rotor Bar Fault Detection and Classification Using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network’, Applied Sciences, vol. 8, no. 1, p. 25, Dec. 2017, doi: https://doi.org/10.3390/app8010025 [CrossRef] [Google Scholar]
- N. Khalfaoui, M. S. Salhi, and H. Amiri, ‘The SOM tool in mechanical fault detection over an electric asynchronous drive’, in 2016 4th International Conference on Control Engineering & Information Technology (CEIT), Hammamet, Tunisia: IEEE, Dec. 2016, pp. 1–6. doi: https://doi.org/10.1109/CEIT.2016.7929086 [Google Scholar]
- B. Boudmane, A. Rachid, I. Mortabit, S. Laaroussi, and M. A. Tahiri, ‘Modeling and Simulation of Three-Phase Squirrel Cage Induction Machine for Broken Rotor Bars Diagnostics’, in 2024 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), May 2024, pp. 1–6. doi: https://doi.org/10.1109/IRASET60544.2024.10548802 [Google Scholar]
- M. Benninger, M. Liebschner, and C. Kreischer, ‘Fault Detection of Induction Motors with Combined Modeling-and Machine-Learning-Based Framework’, Energies, vol. 16, no. 8, p. 3429, 2023, doi: https://doi.org/10.3390/en16083429 [CrossRef] [Google Scholar]
- P. Shi, Z. Chen, Y. Vagapov, and Z. Zouaoui, ‘A new diagnosis of broken rotor bar fault extent in three phase squirrel cage induction motor’, Mechanical Systems and Signal Processing, vol. 42, no. 1–2, pp. 388–403, Jan. 2014, doi: https://doi.org/10.1016/j.ymssp.2013.09.002 [CrossRef] [Google Scholar]
- T. Lubin, T. Hamiti, H. Razik, and A. Rezzoug, ‘Comparison Between Finite-Element Analysis and Winding Function Theory for Inductances and Torque Calculation of a Synchronous Reluctance Machine’, IEEE Trans. Magn., vol. 43, no. 8, pp. 3406–3410, Aug. 2007, doi: https://doi.org/10.1109/TMAG.2007.900404 [CrossRef] [Google Scholar]
- V. Ghorbanian and J. Faiz, ‘A survey on time and frequency characteristics of induction motors with broken rotor bars in line-start and inverter-fed modes’, Mechanical Systems and Signal Processing, vol. 54–55, pp. 427–456, Mar. 2015, doi: https://doi.org/10.1016/j.ymssp.2014.08.022 [CrossRef] [Google Scholar]
- Y. Wu, S. Sun, Q. An, and X. Lie, ‘Treatment Strategy Research on a Squirrel-Cage Induction Motor with Broken Rotor Bar Faults’, Sensors, vol. 22, no. 12, p. 4345, Jun. 2022, doi: https://doi.org/10.3390/s22124345 [CrossRef] [PubMed] [Google Scholar]
- Y. Gritli, A. O. Di Tommaso, F. Filippetti, R. Miceli, C. Rossi, and A. Chatti, ‘Investigation of motor current signature and vibration analysis for diagnosing rotor broken bars in double cage induction motors’, in International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy: IEEE, Jun. 2012, pp. 1360–1365. doi: https://doi.org/10.1109/SPEEDAM.2012.6264465 [Google Scholar]
- M. A. Gultekin and A. Bazzi, ‘Review of Fault Detection and Diagnosis Techniques for AC Motor Drives’, Energies, vol. 16, no. 15, p. 5602, Jul. 2023, doi: https://doi.org/10.3390/en16155602 [CrossRef] [Google Scholar]
- J. Lu, P. Wang, S. Duan, L. Shi, and L. Han, ‘Detection of Broken Rotor Bars Fault in Induction Motors by Using an Improved MUSIC and Least-Squares Amplitude Estimation’, Mathematical Problems in Engineering, vol. 2018, pp. 1–12, Nov. 2018, doi: https://doi.org/10.1155/2018/5942890 [Google Scholar]
- J. R. Rivera-Guillen, J. J. De Santiago-Perez, J. P. Amezquita-Sanchez, M. Valtierra-Rodriguez, and R. J. Romero-Troncoso, ‘Enhanced FFT-based method for incipient broken rotor bar detection in induction motors during the startup transient’, Measurement, vol. 124, pp. 277–285, Aug. 2018, doi: https://doi.org/10.1016/j.measurement.2018.04.03 9 [CrossRef] [Google Scholar]
- T. Ameid, A. Menacer, H. Talhaoui, and Y. Azzoug, ‘Discrete wavelet transform and energy eigen value for rotor bars fault detection in variable speed field-oriented control of induction motor drive’, ISA Transactions, vol. 79, pp. 217–231, Aug. 2018, doi: https://doi.org/10.1016/j.isatra.2018.04.019 [CrossRef] [PubMed] [Google Scholar]
- O. E. Hassan, M. Amer, A. K. Abdelsalam, and B. W. Williams, ‘Induction motor broken rotor bar fault detection techniques based on fault signature analysis – a review’, IET Electric Power Applications, vol. 12, no. 7, pp. 895–907, Aug. 2018, doi: https://doi.org/10.1049/iet-epa.2018.0054 [CrossRef] [Google Scholar]
- T. Bedida et al., ‘Predictive torque control of induction motor for rotor bar faults diagnosis’, Energy Reports, vol. 11, pp. 4940–4956, Jun. 2024, doi: https://doi.org/10.1016/j.egyr.2024.04.056 [CrossRef] [Google Scholar]
- P. S. Panigrahy, P. Konar, and P. Chattopadhyay, ‘Broken bar fault detection using fused DWT-FFT in FPGA platform’, in 2014 International Conference on Power, Control and Embedded Systems (ICPCES), Allahabad, India: IEEE, Dec. 2014, pp. 1–6. doi: https://doi.org/10.1109/ICPCES.2014.7062819 [Google Scholar]
- M. Abd-el-Malek, A. K. Abdelsalam, and O. E. Hassan, ‘Induction motor broken rotor bar fault location detection through envelope analysis of start-up current using Hilbert transform’, Mechanical Systems and Signal Processing, vol. 93, pp. 332–350, Sep. 2017, doi: https://doi.org/10.1016/j.ymssp.2017.02.014 [CrossRef] [Google Scholar]
- M. B. Abd-el-Malek, A. K. Abdelsalam, and O. E. Hassan, ‘Novel approach using Hilbert Transform for multiple broken rotor bars fault location detection for three phase induction motor’, ISA Transactions, vol. 80, pp. 439–457, Sep. 2018, doi: https://doi.org/10.1016/j.isatra.2018.07.020 [CrossRef] [PubMed] [Google Scholar]
- R. Senthil Kumar et al., ‘A combined HT and ANN based early broken bar fault diagnosis approach for IFOC fed induction motor drive’, Alexandria Engineering Journal, vol. 66, pp. 15–30, Mar. 2023, doi: https://doi.org/10.1016/j.aej.2022.12.010 [CrossRef] [Google Scholar]
- Y. Liu and A. M. Bazzi, ‘A review and comparison of fault detection and diagnosis methods for squirrel-cage induction motors: State of the art’, ISA Transactions, vol. 70, pp. 400–409, Sep. 2017, doi: https://doi.org/10.1016/j.isatra.2017.06.001 [CrossRef] [PubMed] [Google Scholar]
- L. P. Chisedzi and M. Muteba, ‘Detection of Broken Rotor Bars in Cage Induction Motors Using Machine Learning Methods’, Sensors, vol. 23, no. 22, p. 9079, Nov. 2023, doi: https://doi.org/10.3390/s23229079 [CrossRef] [PubMed] [Google Scholar]
- W. Abu Elhaija and Q. Abu Al-Haija, ‘A novel dataset and lightweight detection system for broken bars induction motors using optimizable neural networks’, Intelligent Systems with Applications, vol. 17, p. 200167, Feb. 2023, doi: https://doi.org/10.1016/j.iswa.2022.200167 [CrossRef] [Google Scholar]
- K. Barrera-Llanga, J. Burriel-Valencia, Á. Sapena-Bañó, and J. Martínez-Román, ‘A Comparative Analysis of Deep Learning Convolutional Neural Network Architectures for Fault Diagnosis of Broken Rotor Bars in Induction Motors’, Sensors, vol. 23, no. 19, p. 8196, Sep. 2023, doi: https://doi.org/10.3390/s23198196 [CrossRef] [PubMed] [Google Scholar]
- R. Rouaibia, Y. Djeghader, and L. Moussaoui, ‘Artificial neural network and discrete wavelet transform for inter-turn short circuit and broken rotor bars faults diagnosis under various operating conditions’, Electrical Engineering & Electromechanics, no. 3, pp. 31–37, Apr. 2024, doi: https://doi.org/10.20998/2074-272X.2024.3.04 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.