Open Access
Issue |
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
|
|
---|---|---|
Article Number | 06006 | |
Number of page(s) | 7 | |
Section | Electric Vehicles and Hydrogen Technologies | |
DOI | https://doi.org/10.1051/epjconf/202533006006 | |
Published online | 30 June 2025 |
- Rachid, A.: Electric vehicle charging systems: comprehensive review. Energies. 16, 255 (2022) [CrossRef] [Google Scholar]
- Saidi, E.: Backstepping-Based Control of Single-Phase AC-DC Bidirectional Power Converter in V2H Charger. In: El Fadil, H. and Zhang, W. (eds.) Automatic Control and Emerging Technologies. Springer, Singapore (2024) [Google Scholar]
- Mortabit, I.: Instantaneous Vehicle Fuel Consumption Estimation Using Neural Networks. In: El Fadil, H. and Zhang, W. (eds.) Automatic Control and Emerging Technologies. Springer, Singapore (2024) [Google Scholar]
- Errifai, N.: Combined Coulomb-Counting and Open-Circuit Voltage Methods for State of Charge Estimation of Li-Ion Batteries. In: El Fadil, H. and Zhang, W. (eds.) Automatic Control and Emerging Technologies. Springer, Singapore (2024) [Google Scholar]
- Khamlichi, S.: PEM Fuel Cell Parameters Identification Based on Grey Wolf Optimization Algorithm. In: El Fadil, H. and Zhang, W. (eds.) Automatic Control and Emerging Technologies. Springer, Singapore (2024) [Google Scholar]
- Ghaeminezhad, N., Ouyang, Q., Wei, J., Xue, Y., Wang, Z.: Review on state of charge estimation techniques of lithium-ion batteries: A control-oriented approach. J. Energy Storage. 72, 108707 (2023). https://doi.org/10.1016/j.est.2023.108707 [CrossRef] [Google Scholar]
- Zheng, F., Xing, Y., Jiang, J., Sun, B., Kim, J., Pecht, M.: Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries. Appl. Energy. 183, 513–525 (2016). https://doi.org/10.1016/j.apenergy.2016.09.010 [CrossRef] [Google Scholar]
- Pop, Valer & Bergveld, H. & Veld, Bert & Regtien, P. & Danilov, Dmitry & Notten, Peter.: Modeling Battery Behavior for Accurate State-of-Charge Indication. Journal of The Electrochemical Society - J ELECTROCHEM SOC. 153 (2006). https://doi.org/10.1149/1.2335951. [Google Scholar]
- Truchot, C., Dubarry, M., Liaw, B.Y.: State-of-charge estimation and uncertainty for lithium-ion battery strings. Appl. Energy. 119, 218–227 (2014). https://doi.org/10.1016/j.apenergy.2013.12.046 [CrossRef] [Google Scholar]
- Yu, Q.-Q., Xiong, R., Wang, L.-Y., Lin, C.: A Comparative Study on Open Circuit Voltage Models for Lithium-ion Batteries. Chin. J. Mech. Eng. 31, 65 (2018). https://doi.org/10.1186/s10033-018-0268-8 [CrossRef] [Google Scholar]
- Coleman, M., Lee, C.K., Zhu, C., Hurley, W.G.: State-of-Charge Determination From EMF Voltage Estimation: Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 54, 2550–2557 (2007). https://doi.org/10.1109/TIE.2007.899926 [CrossRef] [Google Scholar]
- Waag, W., Sauer, D.U.: Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination. Appl. Energy. 111, 416–427 (2013). https://doi.org/10.1016/j.apenergy.2013.05.001 [CrossRef] [Google Scholar]
- Wang, H. & Liu, Y. & Fu, H. & Li, G.: Estimation of state of charge of batteries for electric vehicles. International Journal of Control and Automation. 6. 185-194 (2013). [Google Scholar]
- Bao, Y., Dong, W., Wang, D.: Online Internal Resistance Measurement Application in Lithium Ion Battery Capacity and State of Charge Estimation. Energies. 11, 1073 (2018). https://doi.org/10.3390/en11051073 [CrossRef] [Google Scholar]
- Lu, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources. 226, 272–288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060 [CrossRef] [Google Scholar]
- Xu, J., Mi, C.C., Cao, B., Cao, J.: A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model. J. Power Sources. 233, 277–284 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.094 [CrossRef] [Google Scholar]
- Wu, S.-L., Chen, H.-C., Tsai, M.-Y.: AC Impedance-based Online State-of-charge Estimation for Li-ion Batteries. Sens. Mater. 539 (2018). https://doi.org/10.18494/SAM.2018.1824 [Google Scholar]
- Zheng, L., Zhang, L., Zhu, J., Wang, G., Jiang, J.: Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model. Appl. Energy. 180, 424–434 (2016). https://doi.org/10.1016/j.apenergy.2016.08.016 [CrossRef] [Google Scholar]
- Huang, W., Abu Qahouq, J.A.: An Online Battery Impedance Measurement Method Using DC–DC Power Converter Control. IEEE Trans. Ind. Electron. 61, 5987–5995 (2014). https://doi.org/10.1109/TIE.2014.2311389 [CrossRef] [Google Scholar]
- Hansen, T., Wang, C.-J.: Support vector based battery state of charge estimator. J. Power Sources. 141, 351–358 (2005). https://doi.org/10.1016/j.jpowsour.2004.09.020 [CrossRef] [Google Scholar]
- Wang, Y., Chen, Z.: A framework for state-of-charge and remaining discharge time prediction using unscented particle filter. Appl. Energy. 260, 114324 (2020). https://doi.org/10.1016/j.apenergy.2019.114324 [CrossRef] [Google Scholar]
- Kollmeyer, P.J., Khanum, F., Naguib, M., Emadi, A.: Tesla Model 3 2170 Li-ion Cell Dataset and Battery SOC Estimation Blind Modeling Tool, https://borealisdata.ca/citation?persistentId=doi:10.5683/SP3/ZVTR4B, (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.