Open Access
Issue
EPJ Web Conf.
Volume 332, 2025
The 8th International Conference on Physics, Mathematics and Statistics (ICPMS2025)
Article Number 01001
Number of page(s) 13
DOI https://doi.org/10.1051/epjconf/202533201001
Published online 09 July 2025
  1. T. Hyakutake, H. Suzuki, and S. Yamamoto, Effect of non-Newtonian fluid properties on bovine sperm motility, J. Biomech. 48, 2941 (2015). [Google Scholar]
  2. L. J. Fauci and R. Dillon, Biofluidmechanics of reproduction, Annu. Rev. Fluid Mech. 38, 371 (2006). [CrossRef] [Google Scholar]
  3. C. Montecucco and R. Rappuoli, Living dangerously: how Helicobacter pylori survives in the human stomach, Nat. Rev. Mol. Cell Biol. 2, 457 (2001). [Google Scholar]
  4. J. P. Celli et al., Helicobacter pylori moves through mucus by reducing mucin viscoelasticity, Proc. Natl. Acad. Sci. U.S.A. 106, 14321 (2009). [Google Scholar]
  5. J. N. Wilking, T. E. Angelini, A. Seminara, M. P. Brenner, and D. A. Weitz, Biofilms as complex fluids, MRS Bull. 36, 385 (2011). [Google Scholar]
  6. O. Reynolds, XXIX. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Philos. Trans. R. Soc. Lond. 935 (1883). [Google Scholar]
  7. E. M. Purcell, Life at low Reynolds number, Am. J. Phys. 45, 3 (1977). [CrossRef] [Google Scholar]
  8. X. Shen and P. E. Arratia, Undulatory swimming in viscoelastic fluids, Phys. Rev. Lett. 106, 208101 (2011). [Google Scholar]
  9. D. A. Gagnon, X. N. Shen, and P. E. Arratia, Undulatory swimming in fluids with polymer networks, Europhys. Lett. 104, 14004 (2013). [Google Scholar]
  10. H. C. Fu, V. B. Shenoy, and T. R. Powers, Low-reynolds number swimming in gels, EPL 91, 24002 (2010). [Google Scholar]
  11. L. Zhu, E. Lauga, and L. Brandt, Self-propulsion in viscoelastic fluids: Pushers vs. pullers, Phys. Fluids 24, 051902 (2012). [Google Scholar]
  12. S. E. Spagnolie, B. Liu, and T. R. Powers, Locomotion of helical bodies in viscoelastic fluids: Enhanced swimming at large helical amplitudes, Phys. Rev. Lett. 111, 068101 (2013). [Google Scholar]
  13. J. R. Gomez-Solano, A. Blokhuis, and C. Bechinger, Dynamics of self-propelled Janus particles in viscoelastic fluids, Phys. Rev. Lett. 116, 138301 (2016). [Google Scholar]
  14. N. Narinder, C. Bechinger, and J. R. Gomez-Solano, Memory-induced transition from a persistent random walk to circular motion for achiral microswimmers, Phys. Rev. Lett. 121, 078003 (2018). [Google Scholar]
  15. G. J. ELFRING, O. S. PAK, and E. LAUGA, Two-dimensional flagellar synchronization in viscoelastic fluids, J. Fluid Mech. 646, 505 (2010). [Google Scholar]
  16. Y. Bozorgi and P. T. Underhill, Effect of viscoelasticity on the collective behavior of swimming microorganisms, Phys. Rev. E 84, 061901 (2011). [Google Scholar]
  17. B. Dünweg and A. J. Ladd, Lattice Boltzmann Simulations of Soft Matter Systems, in Advanced Computer Simulation Approaches for Soft Matter Sciences III (Springer, 2009), pp. 89–166. [Google Scholar]
  18. R. W. Nash, R. Adhikari, and M. E. Cates, Singular forces and pointlike colloids in lattice Boltzmann hydrodynamics, Phys. Rev. E 77, 026709 (2008). [Google Scholar]
  19. C. Pozrikidis and others, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge university press, 1992). [CrossRef] [Google Scholar]
  20. C. S. Peskin, The immersed boundary method, Acta Numer. 11, 479 (2002). [CrossRef] [MathSciNet] [Google Scholar]
  21. K. Stratford and I. Pagonabarraga, Parallel simulation of particle suspensions with the lattice Boltzmann method, Comput. Math. Appl. 55, 1585 (2008). [CrossRef] [Google Scholar]
  22. Z. Guo, C. Zheng, and B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65, 046308 (2002). [CrossRef] [Google Scholar]
  23. A. J. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech. 271, 285 (1994). [Google Scholar]
  24. N.-Q. Nguyen and A. Ladd, Lubrication corrections for lattice-Boltzmann simulations of particle suspensions, Phys. Rev. E 66, 046708 (2002). [Google Scholar]
  25. P. Ahlrichs and B. Dünweg, Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics, J. Chem. Phys. 111, 8225 (1999). [Google Scholar]
  26. O. Berk Usta, A. J. Ladd, and J. E. Butler, Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries, J. Chem. Phys. 122, 094902 (2005). [Google Scholar]
  27. M. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Pure Appl. Math. 5, 109 (1952). [Google Scholar]
  28. J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech. 46, 199 (1971). [Google Scholar]
  29. K. Ishimoto and E. A. Gaffney, A study of spermatozoan swimming stability near a surface, J. Theor. Biol. 360, 187 (2014). [Google Scholar]
  30. M. Kuron, P. Stärk, C. Burkard, J. De Graaf, and C. Holm, A lattice Boltzmann model for squirmers, J. Chem. Phys. 150, 144110 (2019). [Google Scholar]
  31. K. Qi, E. Westphal, G. Gompper, and R. G. Winkler, Enhanced rotational motion of spherical squirmer in polymer solutions, Phys. Rev. Lett. 124, 068001 (2020). [Google Scholar]
  32. F. Alarcón and I. Pagonabarraga, Spontaneous aggregation and global polar ordering in squirmer suspensions, J. Mol. Liq. 185, 56 (2013). [Google Scholar]
  33. S. Goh, R. G. Winkler, and G. Gompper, Hydrodynamic pursuit by cognitive self- steering microswimmers, Commun. Phys. 6, 310 (2023). [CrossRef] [Google Scholar]
  34. H. Arkın and W. Janke, Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage, J. Chem. Phys. 138, 054904 (2013). [Google Scholar]
  35. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953). [Google Scholar]
  36. H.-P. Hsu, W. Paul, and K. Binder, Polymer chain stiffness vs. excluded volume: a monte carlo study of the crossover towards the worm-like chain model, Europhys. Lett. 92, 28003 (2010). [Google Scholar]
  37. K. X. Tan, M. K. Danquah, J. Jeevanandam, and A. Barhoum, Development of janus particles as potential drug delivery systems for diabetes treatment and antimicrobial applications, Pharmaceutics 15, 423 (2023). [Google Scholar]
  38. T. Zhang, D. Lyu, W. Xu, X. Feng, R. Ni, and Y. Wang, Janus particles with tunable patch symmetry and their assembly into chiral colloidal clusters, Nat. Commun.14, 8494 (2023). [Google Scholar]
  39. F. Topuz and O. Okay, Rheological behavior of responsive DNA hydrogels, Macromolecules 41, 8847 (2008). [Google Scholar]
  40. E. Stefanopoulou and A. Papagiannopoulos, Combining particle tracking microrheology and viscometry for the study of DNA aqueous solutions, Biopolymers 111, e23353 (2020). [CrossRef] [PubMed] [Google Scholar]
  41. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979). [Google Scholar]
  42. M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, Oxford, UK, 2003). [Google Scholar]
  43. D. Cao, M. Dvoriashyna, S. Liu, E. Lauga, and Y. Wu, Reduced surface accumulation of swimming bacteria in viscoelastic polymer fluids, Proc. Natl. Acad. Sci. U.S.A. 119, e2212078119 (2022). [Google Scholar]
  44. V. A. Martinez, J. Schwarz-Linek, M. Reufer, L. G. Wilson, A. N. Morozov, and W. C. K. Poon, Flagellated bacterial motility in polymer solutions, Proc. Natl. Acad. Sci. U.S.A. 111, 17771 (2014). [Google Scholar]
  45. J. W. McAllister, P. W. Schmidt, K. D. Dorfman, T. P. Lodge, and F. S. Bates, Thermodynamics of aqueous methylcellulose solutions, Macromolecules 48, 7205 (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.