Open Access
Issue
EPJ Web Conf.
Volume 332, 2025
The 8th International Conference on Physics, Mathematics and Statistics (ICPMS2025)
Article Number 01003
Number of page(s) 13
DOI https://doi.org/10.1051/epjconf/202533201003
Published online 09 July 2025
  1. Kuang D, Liao KH., Learning from Floods: Linking flood experience and flood resilience. Journal of Environmental Management.; 271: 11102 (Oct 2020) doi: https://doi.org/10.1016/j.jenvman.2020.111025 [Google Scholar]
  2. Liu YG, Wen YJ, Zhao YQ, Hu HN. Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China. International Journal of Environmental Research and Public Health. 19(5):2771 (Feb. 2022) doi: https://doi.org/10.3390/ijerph19052771 [Google Scholar]
  3. Rao Y, Hu Z, Sharma SS. Do managers hedge disaster risk? Extreme earthquake shock and firm innovations. Pacific-Basin Finance Journal. 70: 101673 (Dec 2021) doi: https://doi.org/10.1016/j.pacfin.2021.101673 [Google Scholar]
  4. Diaz JH, Brisolara KF, Harrington DJ, Hu CY, Katner AL. The environmental health impact of Hurricane Katrina on New Orleans. American Journal of Public Health. 110(10):1480-1484. (Sep. 2020) doi: https://doi.org/10.2105/AJPH.2020.305809 [CrossRef] [PubMed] [Google Scholar]
  5. Kim JY, Park MH, Lee JS, Ahn JS, Han IS, Kwon MO, Song JY. Consideration of Time Lag of Sea Surface Temperature due to Extreme Cold Wave-West Sea, South Sea. Journal of the Korean Society of Marine Environment and Safety. 27(6):701-707 (Oct. 2021) doi: http://dx.doi.org/10.7837/kosomes.2021.27.6.701 [Google Scholar]
  6. Lee M, Lee J. Trend and return level of extreme snow events in New York City. The American Statistician. 74(3): 282-293 (Jun. 2020) doi: https://doi.org/10.1080/00031305.2019.1592780 [Google Scholar]
  7. Fang GS, Pang WC, Zhao L, Cui W, Zhu LD, Cao SY, Ge YJ., Extreme typhoon wind speed mapping for coastal region of China: Geographically weighted regression–based circular subregion algorithm. Journal of Structural Engineering. 147(10):1-21 (Jul. 2021) doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0003122 [Google Scholar]
  8. Ouannas A, Debbouche N, Pham VT. Kingston SL, Kapitaniak T. Chaos in fractional system with extreme events. The European Physical Journal Special Topics. 230(7-8): 2021–2033 (Jun. 2021) doi: https://doi.org/10.1140/epjs/s11734-021-00135-8 [Google Scholar]
  9. Ning GC, Luo M, Zhang W, Liu Z, Wang SG, Gao T. Rising risks of compound extreme heat‐precipitation events in China. International Journal of Climatology. 42(11): 5785 – 5795 (Feb. 2022) doi: https://doi.org/10.1002/joc.7561 [Google Scholar]
  10. Zhang W. Extreme Translation Events of Atlantic Tropical Cyclones. Atmosphere. 12(8): 1032 (Aug. 2021) doi: https://doi.org/10.3390/atmos12081032 [CrossRef] [Google Scholar]
  11. Li N, Xiao ZN, Zhao L. Analysis on the mechanism of the 2018 summer extreme high temperature event in Northeast China. Climatic and Environmental Research (in Chinese). 25(5):469-482 (2020) doi: https://doi.org/10.3878/j.issn.1006-9585.2020.19100 [Google Scholar]
  12. Lu B, Ren HL. What caused the extreme Indian Ocean Dipole event in 2019? Geophysical Research Letters. 47: e2020GL087768 (May 2020) doi: https://doi.org/10.1029/2020GL087768 [Google Scholar]
  13. Zhang, X. D., Fu, Y. F., Han, Z., Overland, J. E., Rinke, A., Tang, H., … Wang, M. Y., Extreme Cold Events from East Asia to North America in Winter 2020/21: Comparisons, Causes, and Future Implications. Advances in Atmospheric Sciences, 39,553–565 (2022) DOI: https://doi.org/10.1007/s00376-021-1229-1 [CrossRef] [Google Scholar]
  14. Wang NX, Zhang QY, Sun SX, Wang H, He MX, Zheng PM, Wang RQ. A sandstorm extreme event from the Yellow River Basin in March 2021: Accurate identification and driving cause. Science of The Total Environment. 846: 157424 (Nov. 2022) doi: https://doi.org/10.1016/j.scitotenv.2022.157424 [Google Scholar]
  15. Broska LH, Poganietz WR, Vögele S. Extreme events defined—A conceptual discussion applying a complex systems approach. Futures. 115:102490 (Jan. 2020) doi: https://doi.org/10.1016/j.futures.2019.102490 [Google Scholar]
  16. Otiniano CEG, Paiva BSde, Martins Netob DS. The transmuted GEV distribution: properties and application. Communications for Statistical Applications and Methods. 26(3): 239-259 (Apr. 2019) doi: https://doi.org/10.29220/CSAM.2019.26.3.239 [Google Scholar]
  17. Lettenmaier DP, Wallis JR, Wood EF. Effect of regional heterogeneity on flood frequency estimation. Water Resources Research. 23(2): 313-323 (Feb.1987) doi: https://doi.org/10.1029/WR023i002p00313 [Google Scholar]
  18. Hewa GA, Wang QJ, McMahon TA. Nathan RJ. Peel, M. C. Generalized extreme value distribution fitted by LH moments for low‐flow frequency analysis. Water Resources Research. 43(6): W06301 (Jun. 2007) doi: https://doi.org/10.1029/2006WR004913 [Google Scholar]
  19. Morrison JE, Smith JA. Stochastic modeling of flood peaks using the generalized extreme value distribution. Water Resources Research. 38(12):1305 (Dec. 2002) doi: https://doi.org/10.1029/2001WR000502 [Google Scholar]
  20. Aryal GR, Tsokos CP. On the transmuted extreme value distribution with application. Nonlinear Analysis: Theory, Methods & Applications. 71(12): e1401-e1407 (Dec. 2009) doi: https://doi.org/10.1016/j.na.2009.01.168 [Google Scholar]
  21. Nascimento F, Bourguignon M, Jeremias L., Extended generalized extreme value distribution with applications in environmental data. Hacettepe Journal of Mathematics and Statistics 45: 1847-1864 (Dec. 2016) doi: https://api.semanticscholar.org/CorpusID:197479075 [Google Scholar]
  22. Sultan KS, Ismail MA, Al-Moisheer AS., Mixture of two inverse Weibull distributions: Properties and estimation. Computational Statistics & Data Analysis. 51(11):5377-5387 (Jul. 2007) doi: https://doi.org/10.1016/j.csda.2006.09.016 [CrossRef] [Google Scholar]
  23. Rulfová Z, Buishand A, Roth M, Kyselý J., A two-component generalized extreme value distribution for precipitation frequency analysis. Journal of Hydrology. 534: 659-668 (Mar. 2016) doi: https://doi.org/10.1016/j.jhydrol.2016.01.032 [Google Scholar]
  24. Everitt BS, Hand DJ. Finite mixture distributions. London, UK: Chapman and Hall. (1981) doi: https://link.springer.com/book/10.1007/978-94-009-5897-5 [Google Scholar]
  25. Titterington DM, Smith AFM, Makov UE. Statistical analysis of finite mixture distributions. Chichester, Wiley. (1985) doi: https://searchworks.stanford.edu/view/1199427 [Google Scholar]
  26. McLachlan GJ, Basford KE. Mixture models: Inference and applications to clustering. New York, United States: Marcel Dekker. Mar. (1988) doi: https://api.semanticscholar.org/CorpusID:119405289 [Google Scholar]
  27. Lindsay BG. Mixture Models: Theory, Geometry, and Applications. Hayward, Calif: Institute of Mathematical Statistics. (1995) doi: https://api.semanticscholar.org/CorpusID:117315018 [Google Scholar]
  28. McLachlan GJ, Krishnan T. The EM algorithm and extensions. Hoboken, NJ: United States: John Wiley & Sons. (2007) doi: https://api.semanticscholar.org/CorpusID:122530182 [Google Scholar]
  29. McLachlan GJ, Lee SX, Rathnayake SI. Finite mixture models. Annual Review of Statistics and Its Application. 6(1): 355-378 (Mar. 2019) doi: https://doi.org/10.1146/annurev-statistics-031017-100325 [CrossRef] [Google Scholar]
  30. Ge R, Zhai Q, Wang, H. Huang, Y. X. Wiener degradation models with scale-mixture normal distributed measurement errors for RUL prediction. Mechanical Systems and Signal Processing. 173: 109029 (Jul. 2022) doi: https://doi.org/10.1016/j.ymssp.2022.109029 [Google Scholar]
  31. Lone SA, Anwar S, Sindhu TN, Jarad F. Some estimation methods for mixture of extreme value distributions with simulation and application in medicine. Results in Physics. 37: 105496 (Jun. 2022) doi: https://doi.org/10.1016/j.rinp.2022.105496 [Google Scholar]
  32. Chen H, Huang ZX. Application of mixed extreme value theory and maximum likelihood method to estimate seismic risk in Chinese Mainland. Acta Seismologica Sinica. 8: 264-269 (May 1995) doi: https://doi.org/10.1007/BF02650497 [Google Scholar]
  33. Al-Hussaini EK, Sultan KS. Ch. 5. Reliability and hazard based on finite mixture models. Handbook of Statistics. 20:139-183 (Jan. 2001) doi: https://doi.org/10.1016/S0169-7161(01)20007-8 [Google Scholar]
  34. Shaw WT, Buckley IR. The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv e-prints. arXiv:0901.0434 (2009) doi: https://doi.org/10.48550/arXiv.0901.0434 [Google Scholar]
  35. Chandra S. On the mixtures of probability distributions. Scandinavian Journal of Statistics. 4(3):105-112 (Mar. 1977) doi: http://www.jstor.org/stable/4615660 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.