Open Access
Issue
EPJ Web Conf.
Volume 333, 2025
XLVI Symposium on Nuclear Physics 2025
Article Number 02005
Number of page(s) 7
Section Fundamental Symmetries and Hadronic Physics
DOI https://doi.org/10.1051/epjconf/202533302005
Published online 01 August 2025
  1. P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12 (1964), 132–133. https://doi.org/10.1016/0031-9163(64)91136-9 [Google Scholar]
  2. F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys. Rev. Lett. 13 (1964), 321–323. https://doi.org/10.1103/PhysRevLett.13.321 [Google Scholar]
  3. P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13 (1964), 508–509. https://doi.org/10.1103/PhysRevLett.13.508 [Google Scholar]
  4. G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, “Global Conservation Laws and Massless Particles,” Phys. Rev. Lett. 13 (1964), 585–587. https://doi.org/10.1103/PhysRevLett.13.585 [Google Scholar]
  5. S. L. Glashow, “Partial Symmetries of Weak Interactions,” Nucl. Phys. 22 (1961), 579588. https://doi.org/10.1016/0029-5582(61)90469-2 [Google Scholar]
  6. S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19 (1967), 1264–1266. https://doi.org/10.1103/PhysRevLett.19.1264 [Google Scholar]
  7. A. Salam, “Weak and Electromagnetic Interactions,” Conf. Proc. C 680519 (1968), 367377. https://doi.org/10.1142/9789812795915_0034 [Google Scholar]
  8. S. Weinberg, “Baryon and Lepton Nonconserving Processes,” Phys. Rev. Lett. 43 (1979), 1566–1570. https://doi.org/10.1103/PhysRevLett.43.1566 [Google Scholar]
  9. P. Minkowski, “µ → eγ at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B 67 (1977), 421–428. https://doi.org/10.1016/0370-2693(77)90435-X [Google Scholar]
  10. M. Gell-Mann, P. Ramond and R. Slansky, “Complex Spinors and Unified Theories,” Conf. Proc. C 790927 (1979), 315–321. [Google Scholar]
  11. R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980), 912. https://doi.org/10.1103/PhysRevLett.44.912 [Google Scholar]
  12. M. Fukugita and T. Yanagida, “Baryogenesis Without Grand Unification,” Phys. Lett. B 174 (1986), 45–47. https://doi.org/10.1016/0370-2693(86)91126-3 [Google Scholar]
  13. S. T. Petcov, “The Processes µ → e + γ,µ → e + e, ν0 → v + γ in the Weinberg-Salam Model with Neutrino Mixing,” Sov. J. Nucl. Phys. 25 (1977), 340 [erratum: Sov. J. Nucl. Phys. 25 (1977), 698; erratum: Yad. Fiz. 25 (1977), 1336] JINR-E2-10176. [Google Scholar]
  14. T. P. Cheng and L. F. Li, “Nonconservation of Separate mu - Lepton and e - Lepton Numbers in Gauge Theories with v+a Currents,” Phys. Rev. Lett. 38 (1977), 381. https://doi.org/10.1103/PhysRevLett.38.381 [Google Scholar]
  15. W. J. Marciano and A. I. Sanda, “Exotic Decays of the Muon and Heavy Leptons in Gauge Theories,” Phys. Lett. B 67 (1977), 303–305. https://doi.org/10.1016/0370-2693(77)90377-X [Google Scholar]
  16. B. W. Lee and R. E. Shrock, “Natural Suppression of Symmetry Violation in Gauge Theories: Muon - Lepton and Electron Lepton Number Nonconservation,” Phys. Rev. D 16 (1977), 1444. https://doi.org/10.1103/PhysRevD.16.1444. [Google Scholar]
  17. S. L. Glashow, J. Iliopoulos and L. Maiani, “Weak Interactions with Lepton-Hadron Symmetry,” Phys. Rev. D 2 (1970), 1285–1292. https://doi.org/10.1103/PhysRevD.2.1285 [Google Scholar]
  18. J. I. Illana and T. Riemann, “Charged lepton flavor violation from massive neutrinos in Z decays,” Phys. Rev. D 63 (2001), 053004. https://doi.org/10.1103/PhysRevD.63.053004 [Google Scholar]
  19. E. Arganda, A. M. Curiel, M. J. Herrero and D. Temes, “Lepton flavor violating Higgs boson decays from massive seesaw neutrinos,” Phys. Rev. D 71 (2005), 035011. https://doi.org/10.1103/PhysRevD.71.035011 [Google Scholar]
  20. G. Hernández-Tomé, G. López Castro and P. Roig, “Flavor violating leptonic decays of τ and µ leptons in the Standard Model with massive neutrinos,” Eur. Phys. J. C 79 (2019) no. 1, 84 [erratum: Eur. Phys. J. C 80 (2020) no.5, 438]. https://doi.org/10.1140/epjc/s10052-019-6563-4 [Google Scholar]
  21. P. Blackstone, M. Fael and E. Passemar, “τ → µµµ at a rate of one out of 1014 tau decays?,” Eur. Phys. J. C 80 (2020) no. 6, 506. https://doi.org/10.1140/epjc/s10052-020-8059-7 [Google Scholar]
  22. J. D. Vergados, H. Ejiri and F. Simkovic, “Theory of Neutrinoless Double Beta Decay,” Rept. Prog. Phys. 75 (2012), 106301. https://doi.org/10.1088/0034-4885/75/10/106301 [Google Scholar]
  23. R. N. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” Phys. Rev. D 34 (1986), 1642. https://doi.org/10.1103/PhysRevD.34.1642 [Google Scholar]
  24. J. Bernabéu, A. Santamaría, J. Vidal, A. Méndez and J. W. F. Valle, “Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model,” Phys. Lett. B 187 (1987), 303–308. https://doi.org/10.1016/0370-2693(87)91100-2 [Google Scholar]
  25. M. Malinsky, J. C. Romao and J. W. F. Valle, “Novel supersymmetric SO(10) seesaw mechanism,” Phys. Rev. Lett. 95 (2005), 161801. https://doi.org/10.1103/PhysRevLett.95.161801 [Google Scholar]
  26. G. Hernández-Tomé, J. I. Illana, M. Masip, G. López Castro and P. Roig, “Effects of heavy Majorana neutrinos on lepton flavor violating processes,” Phys. Rev. D 101 (2020) no. 7, 075020, https://doi.org/10.1103/PhysRevD.101.075020. [Google Scholar]
  27. A. M. Baldini et al. [MEG], “Search for the lepton flavour violating decay µ+ → e+γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 (2016) no. 8, 434. https://doi.org/10.1140/epjc/s10052-016-4271-x [Google Scholar]
  28. A. M. Baldini et al. [MEG II], “The design of the MEG II experiment,” Eur. Phys. J. C 78 (2018) no. 5, 380. https://doi.org/10.1140/epjc/s10052-018-5845-6 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  29. R. Abramishvili et al. [COMET], “COMET Phase-I Technical Design Report,” PTEP 2020 (2020) no.3, 033C01. https://doi.org/10.1093/ptep/ptz125 [Google Scholar]
  30. L. Bartoszek et al. [Mu2e], “Mu2e Technical Design Report,” https://doi.org/10.2172/1172555 [Google Scholar]
  31. A. Crivellin, S. Davidson, G. M. Pruna and A. Signer, “Renormalisation-group improved analysis ofµ → e processes in a systematic effective-field-theory (EFT) approach,” JHEP 05 (2017), 117. 10.1007/JHEP05(2017)117 [Google Scholar]
  32. A. Crivellin, S. Najjari and J. Rosiek, “Lepton Flavor Violation in the Standard Model with general Dimension-Six Operators,” JHEP 04 (2014), 167. 10.1007/JHEP04(2014)167 [Google Scholar]
  33. V. Cirigliano, S. Davidson and Y. Kuno, “Spin-dependent µ → e conversion,” Phys. Lett. B 771 (2017), 242–246. https://doi.org/10.1016/j.physletb.2017.05.053 [Google Scholar]
  34. T. Husek, K. Monsálvez-Pozo and J. Portolés, “Lepton-flavour violation in hadronic tau decays and µ - τ conversion in nuclei,” JHEP 01 (2021), 059. https://doi.org/10.1007/JHEP01(2021)059 [Google Scholar]
  35. S. Banerjee, et al. “Snowmass 2021 White Paper: Charged lepton flavor violation in the tau sector,” [arXiv:2203.14919 [hep-ph]]. [Google Scholar]
  36. S. Davidson and B. Echenard, “Reach and complementarity of µ → e searches,” Eur. Phys. J. C 82 (2022) no. 9, 836. https://doi.org/10.1016/10.1140/epjc/s10052-022-10773-4 [Google Scholar]
  37. M. Hoferichter, J. Menéndez and F. Noël, “Improved Limits on Lepton-Flavor-Violating Decays of Light Pseudoscalars via Spin-Dependent µ → e Conversion in Nuclei,” Phys. Rev. Lett. 130 (2023) no. 13, 131902. https://doi.org/10.1103/PhysRevLett.130.131902 [Google Scholar]
  38. E. Fernández-Martínez, X. Marcano and D. Naredo-Tuero, “Global lepton flavour violating constraints on new physics,” Eur. Phys. J. C 84 (2024) no. 7, 666. https://doi.org/10.1016/10.1140/epjc/s10052-024-12973-6 [Google Scholar]
  39. W. Haxton, K. McElvain, T. Menzo, E. Rule and J. Zupan, “Effective theory tower for µ → e conversion,” JHEP 11 (2024), 076. https://doi.org/10.1007/JHEP11(2024)076 [Google Scholar]
  40. F. Delzanno, K. Fuyuto, S. Gonzàlez-Solís and E. Mereghetti, “Global analysis ofµ → e interactions in the SMEFT,” [arXiv:2411.13497 [hep-ph]]. [Google Scholar]
  41. S. N. Gninenko, M. M. Kirsanov, N. V. Krasnikov and V. A. Matveev, “Probing lepton flavor violation in muon-neutrino + N -> tau + … scattering and mu -> tau conversion on nucleons,” Mod. Phys. Lett. A 17 (2002), 1407. https://doi.org/10.1142/S0217732302007855 [Google Scholar]
  42. S. Gninenko, S. Kovalenko, S. Kuleshov, V. E. Lyubovitskij and A. S. Zhevlakov, “Deep inelastic e-τ andµ -τ conversion in the NA64 experiment at the CERN SPS,” Phys. Rev. D98 (2018) no. 1, 015007. https://doi.org/10.1103/PhysRevD.98.015007 [Google Scholar]
  43. I. Pacheco and P. Roig, “Lepton flavor violation in the Littlest Higgs Model with T parity realizing an inverse seesaw,” JHEP 02 (2022), 054. https://doi.org/10.1007/JHEP02(2022)054 [Google Scholar]
  44. T. Husek, K. Monsálvez-Pozo and J. Portolés, “Constraints on leptoquarks from leptonflavour-violating tau-lepton processes,” JHEP 04 (2022), 165. https://doi.org/10.1007/10.1007/JHEP04(2022)165 [Google Scholar]
  45. E. Ramírez and P. Roig, “Lepton flavor violation within the simplest little Higgs model,” Phys. Rev. D 106 (2022) no. 5, 056018. https://doi.org/10.1103/PhysRevD.106.056018 [Google Scholar]
  46. F. Fortuna, X. Marcano, M. Marín and P. Roig, “Lepton flavor violation from diphoton effective interactions,” Phys. Rev. D 108 (2023) no. 1, 015008. https://doi.org/10.1103/PhysRevD.108.015008 [Google Scholar]
  47. R. Kitano, M. Koike and Y. Okada, “Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei,” Phys. Rev. D 66 (2002), 096002 [erratum: Phys. Rev. D 76 (2007), 059902]. https://doi.org/10.1103/PhysRevD.76.059902 [Google Scholar]
  48. S. Weinberg and G. Feinberg, “Electromagnetic Transitions Between mu Meson and Electron,” Phys. Rev. Lett. 3 (1959), 111–114. https://doi.org/10.1103/PhysRevLett.3.111 [Google Scholar]
  49. T. S. Kosmas, G. K. Leontaris and J. D. Vergados, “Lepton flavor nonconservation,” Prog. Part. Nucl. Phys. 33 (1994), 397–448. https://doi.org/10.1016/0146-6410(94)90047-7 [Google Scholar]
  50. M. Heinz, M. Hoferichter, T. Miyagi, F. Nöel and A. Schwenk, “Ab initio calculations of overlap integrals for µ → e conversion in nuclei,” [arXiv:2412.04545 [nucl-th]]. [Google Scholar]
  51. K. Kovarik, A. Kusina, T. Jezo, D. B. Clark, C. Keppel, F. Lyonnet, J. G. Morfin, F. I. Olness, J. F. Owens and I. Schienbein, et al. “nCTEQ15 - Global analysis of nuclear parton distributions with uncertainties in the CTEQ framework,” Phys. Rev. D 93 (2016) no. 8, 085037. https://doi.org/10.1103/PhysRevD.93.085037 [Google Scholar]
  52. D. B. Clark, E. Godat and F. I. Olness, “ManeParse : A Mathematica reader for Parton Distribution Functions,” Comput. Phys. Commun. 216 (2017), 126–137. https://doi.org/10.1016/j.cpc.2017.03.004 [Google Scholar]
  53. A. J. Bevan et al. [BaBar and Belle], “The Physics of the B Factories,” Eur. Phys. J. C 74 (2014), 3026. https://doi.org/10.1140/epjc/s10052-014-3026-9 [CrossRef] [Google Scholar]
  54. E. Kou et al. [Belle-II], “The Belle II Physics Book,” PTEP 2019 (2019) no. 12, 123C01 [erratum: PTEP 2020 (2020) no.2, 029201]. https://doi.org/10.1093/ptep/ptz106 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.