Open Access
Issue
EPJ Web Conf.
Volume 333, 2025
XLVI Symposium on Nuclear Physics 2025
Article Number 03004
Number of page(s) 9
Section Facilities, Instrumentation and Applications
DOI https://doi.org/10.1051/epjconf/202533303004
Published online 01 August 2025
  1. M. Pospelov and A. Ritz, “Electric dipole moments as probes of new physics,” Ann. Phys. 318, 119–169 (2005). https://doi.org/10.1016/j.aop.2005.04.002 [Google Scholar]
  2. J. Engel, M.J. Ramsey-Musolf, U. van Kolck, “Electric dipole moments of nuclei, nucleons, and atoms,” Prog. Part. Nucl. Phys. 71, 21 (2013). https://doi.org/10.1016/j.ppnp.2013.03.003 [Google Scholar]
  3. T. E. Chupp, et al., “Electric dipole moments of atoms, molecules, nuclei, and particles,” Rev. Mod. Phys. 91, 015001 (2019). https://doi.org/10.1103/RevModPhys.91.015001 [Google Scholar]
  4. C. Abel, et al., “Measurement of the Permanent Electric Dipole Moment of the Neutron,” Phys. Rev. Lett. 124, 081803 (2020). https://doi.org/10.1103/PhysRevLett.124.081803 [Google Scholar]
  5. V. Cirigliano, et al., “CP Violation in Higgs-Gauge Interactions: From Tabletop Experiments to the LHC,” Phys. Rev. Lett. 123, 051801 (2019). https://doi.org/10.1103/PhysRevLett.123.051801 [Google Scholar]
  6. A. Crivellin and F. Saturnino, “Correlating tauonic B decays with the neutron electric dipole moment via a scalar leptoquark,” Phys. Rev. D 100, 115014 (2019). https://doi.org/10.1103/PhysRevD.100.115014 [Google Scholar]
  7. N. F. Bell, et al., “Electric dipole moments from postsphaleron baryogenesis,” Phys. Rev. D 99, 015034 (2019). https://doi.org/10.1103/PhysRevD.99.015034 [Google Scholar]
  8. W.-S. Hou, G. Kumar, and S. Teunissen, “Discovery prospects for electron and neutron electric dipole moments in the general two Higgs doublet model” Phys. Rev. D 109, L011703 (2024). https://doi.org/10.1103/PhysRevD.109.L011703 [Google Scholar]
  9. M. Carena, et al., “ν solution to the strong CP problem,” Phys. Rev. D 100, 094018 (2019). https://doi.org/10.1103/PhysRevD.100.094018 [Google Scholar]
  10. Y. Mimura, R. N. Mohapatra, and M. Severson, “Grand unified parity solution to the strong CP problem,” Phys. Rev. D99, 115025 (2019). https://doi.org/10.1103/PhysRevD.99.115025 [Google Scholar]
  11. R. Ferro-Hernandez, S. Morisi, and E. Peinado, “Axionless strong CP problem solution: the spontaneous CP violation case,” arXiv:2407.18161 (2024). https://doi.org/10.48550/arXiv.2407.18161. [Google Scholar]
  12. C. Abel et al., “Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields,” Phys. Rev. X 7, 041034 (2017). https://doi.org/10.1103/PhysRevX.7.041034. [Google Scholar]
  13. D. Wurm et al., “The PanEDM Neutron Electric Dipole Moment Experiment,” EPJ Web Conf. 219, 02006 (2019). https://doi.org/10.1051/epjconf/201921902006 [Google Scholar]
  14. N.J. Ayres et al., “The design of the n2EDM experiment,” Eur. Phys. J. C 81, 512 (2021). https://doi.org/10.1140/epjc/s10052-021-09298-z [Google Scholar]
  15. R. Alarcon, these proceedings. [Google Scholar]
  16. D. K.-T. Wong, et al., “Characterization of the new Ultracold Neutron beamline at the LANL UCN facility,” Nucl. Instrum. Meth. A 1050, 168105 (2023). https://doi.org/10.1016/j.nima.2023.168105 [Google Scholar]
  17. J. W. Martin, et al., “The TRIUMF UltraCold Advanced Neutron Source,” Nucl. Phys. News 31, 19 (2021). https://doi.org/10.1080/10619127.2021.1881367 [Google Scholar]
  18. Y. Masuda et al., “Spallation Ultracold-Neutron Production in Superfluid Helium,” Phys. Rev. Lett. 89, 284801 (2002). https://doi.org/10.1103/PhysRevLett.89.284801 [Google Scholar]
  19. Y. Masuda et al., “Spallation Ultracold Neutron Source of Superfluid Helium below 1 K,” Phys. Rev. Lett. 108, 134801 (2012). https://doi.org/10.1103/PhysRevLett.108.134801 [Google Scholar]
  20. S. Ahmed et al. (TUCAN Collaboration), “A beamline for fundamental neutron physics at TRIUMF,” Nucl. Instrum. Meth. A 927, 101 (2019). https://doi.org/10.1016/j.nima.2019.01.074 [Google Scholar]
  21. S. Ahmed et al. (TUCAN Collaboration), “Fast-switching magnet serving a spallation- driven ultracold neutron source,” Phys. Rev. Accel. Beams 22, 102401 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.102401 [Google Scholar]
  22. S. Ahmed et al. (TUCAN Collaboration), “First ultracold neutrons produced at TRIUMF,” Phys. Rev. C 99, 025503 (2019). https://doi.org/10.1103/PhysRevC.99.025503 [Google Scholar]
  23. W. Schreyer et al., “Optimizing neutron moderators for a spallation-driven ultracoldneutron source at TRIUMF,” Nucl. Instrum Meth. A 959 163525 (2020). https://doi.org/10.1016/j.nima.2020.163525 [Google Scholar]
  24. S. Hansen-Romu, “Modeling He-II cryostat performance and characterization of spin manipulation components for a neutron electric dipole moment experiment at TRIUMF,” PhD thesis, U. Manitoba (2023). https://mspace.lib.umanitoba.ca/items/f834c696-740c-4bcb-ac48-ea7222b596a4 [Google Scholar]
  25. S. Kawasaki et al., “Development of a Helium-3 Cryostat for a Ultra-Cold Neutron Source,” IOP Conf. Ser.: Mater. Sci. Eng. 755, 012140 (2020). https://doi.org/10.1088/1757-899X/755/1/012140 [Google Scholar]
  26. T. Okamura et al., “Thermo-fluid analyses for UCN cryogenic system,” IOP Conf. Ser.: Mater. Sci. Eng. 755, 012141 (2020). https://doi.org/10.1088/1757-899X/755/1/012141 [CrossRef] [Google Scholar]
  27. S. Sidhu, et al., “Estimated performance of the TRIUMF ultracold neutron source and electric dipole moment apparatus,” EPJ Web of Conf. 282, 01015 (2023). https://doi.org/10.1051/epjconf/202328201015 [Google Scholar]
  28. S. Sidhu, “Improving the statistical sensitivity reach of the TUCAN neutron electric dipole moment experiment,” PhD thesis, Simon Fraser U. (2024). https://summit.sfu.ca/item/36485 [Google Scholar]
  29. E. Korobkina, R. Golub, B.W. Wehring, and A.R. Young, “Production of UCN by downscattering in superfluid He-4,” Phys. Lett. A 301 462 (2002). https://doi.org/10.1016/S0375-9601(02)01052-6 [Google Scholar]
  30. W. Schreyer, et al., “PENTrack—a simulation tool for ultracold neutrons, protons, and electrons in complex electromagnetic fields and geometries,” Nucl. Instrum. Meth. A 858, 123 (2017). https://doi.org/10.1016/j.nima.2017.03.036 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.