Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01082 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701082 | |
| Published online | 07 October 2025 | |
- The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, Journal of Instrumentation 3, S08003 (2008). 10.1088/1748-0221/3/08/S08003 [Google Scholar]
- J. Catmore, The ATLAS Data Processing Chain: from Collisions to Papers, https://indico.cern.ch/event/472469/contributions/1982677/attachments/1220934/1785823/intro_slides.pdf (2016), accessed: 2020-04-09 [Google Scholar]
- F. Barreiro, M. Borodin, K. De, D. Golubkov, A. Klimentov, T. Maeno, R. Mashinistov, S. Padolski, T. Wenaus, A. Collaboration et al., The ATLAS production system evolution: new data processing and analysis paradigm for the LHC Run2 and highluminosity, in Journal of Physics: Conference Series (IOP Publishing, 2017), Vol. 898, p. 052016 [Google Scholar]
- The CMS Collaboration and others, The CMS Experiment at the CERN LHC, Journal of instrumentation 3, 1 (2008). [Google Scholar]
- A. Falcone, DUNE Collaboration et al., Deep Underground Neutrino Experiment: DUNE, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1041, 167217 (2022). [Google Scholar]
- T. Maeno, A. Alekseev, F.H. Barreiro Megino, K. De, W. Guan, E. Karavakis, A. Klimentov, T. Korchuganova, F. Lin, P. Nilsson et al., PanDA: Production and Distributed Analysis System, Computing and Software for Big Science 8, 4 (2024). 10.1007/s41781-024-00114-3 [Google Scholar]
- D.K. Park, Y. Ren, O.O. Kilic, T. Korchuganova, S.S. Vatsavai, J. Boudreau, T. Chowdhury, S. Feng, R. Khan, J. Kim et al., AI Surrogate Model for Distributed Computing Workloads, in Proceedings of the SC ’24 Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis (IEEE Press, 2025), SC-W ’24, p. 79–86, ISBN 9798350355543 [Google Scholar]
- M. Barisits, T. Beermann, F. Berghaus, B. Bockelman, J. Bogado, D. Cameron, D. Christidis, D. Ciangottini, G. Dimitrov, M. Elsing et al., Rucio: Scientific Data Management, Computing and Software for Big Science 3, 1 (2019). [Google Scholar]
- N. Szczepanek, D. Giordano, I. Glushkov, G.M. Borge, A. Di Girolamo, A. Lory, I. Vukotic, Optimisation of ATLAS Computing Resource Usage through a Modern HEP Benchmark Suite via HammerCloud and Big PanDA, arXiv preprint arXiv:2502.04853 (2025). [Google Scholar]
- R.P. Taylor, F. Berghaus, F. Brasolin, C.J.D. Cordeiro, R. Desmarais, L. Field, I. Gable, D. Giordano, A. Di Girolamo, J. Hover et al., The Evolution of Cloud Computing in ATLAS, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664, p. 022038 [Google Scholar]
- D. Karpenko, R. Vitenberg, A.L. Read, ATLAS Grid Workload on NDGF Resources: Analysis, Modeling, and Workload Generation, Future Generation Computer Systems 47, 31 (2015). [Google Scholar]
- L. Xu, M. Skoularidou, A. Cuesta-Infante, K. Veeramachaneni, Modeling Tabular Data using Conditional GAN, Advances in neural information processing systems 32 (2019). [Google Scholar]
- A. Kotelnikov, D. Baranchuk, I. Rubachev, A. Babenko, TabDDPM: Modelling Tabular Data with Diffusion Models, in International Conference on Machine Learning (PMLR, 2023), pp. 17564–17579 [Google Scholar]
- N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer, SMOTE: Synthetic Minority Over-sampling Technique, Journal of Artificial Intelligence Research 16, 321 (2002). [CrossRef] [Google Scholar]
- Error Codes - PanDA Pilot Documentation, https://panda-wms.readthedocs.io/en/latest/architecture/pilot_docs/components/common/errorcodes.html, accessed: 2025-02-24 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

