Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01135 | |
| Number of page(s) | 9 | |
| DOI | https://doi.org/10.1051/epjconf/202533701135 | |
| Published online | 07 October 2025 | |
- Boyarinov, S., Raydo, B., Cuevas, C. et al., The CLAS12 Data Acquisition System. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 966, (2020). https://doi.org/10.1140/epjp/s13360-022-03146-z [Google Scholar]
- Burkert, V.D., Elouadrhiri, L., Adhikari, K.P. et al., The CLAS12 Spectrometer at Jefferson Laboratory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 959, (2020). https://doi.org/10.1016/j.nima.2020.163419 [Google Scholar]
- Montag, C., Zaltsman, A., Blednykh, A. et al., The EIC accelerator: design highlights and project status. Journals of Accelerator Conferences Website (JACoW) IPAC2024, (2024). https://doi.org/10.18429/JACoW-IPAC2024-MOPC67 [Google Scholar]
- Battaglieri, M., Bersani, A., Caiffi, B. et al., Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab. arXiv 1607.01390, (2016). https://doi.org/10.48550/arXiv. 1607.01390 [Google Scholar]
- Ameli, F., Battaglieri, M., Berdnikov, V.V. et al., Streaming readout for next generation electron scattering experiments. Eur. Phys.J.Plus 137, 958 (2022). https://doi.org/10.1016/j.nima.2020.163698 [Google Scholar]
- [Available online] ,GNU Gzip Version 1.9 . https://www.gnu.org/software/gzip/ [Google Scholar]
- [Available online], Bzip2, a block-sorting file compressor. Version 1.0.6, 6-Sept-2010 https://sourceware.org/bzip2/ [Google Scholar]
- [Available online], XZ compression algorithm https://tukaani.org/xz/format.html [Google Scholar]
- [Available online], Z Standard compression algorithm https://facebook.github.io/zstd/ [Google Scholar]
- Bank, D., Koenigstein, N., Giryes, R. Machine Learning for Data Science Handbook, Autoencoders chapter (Springer, 2023) pp 353-374 [Google Scholar]
- LeCun, Y., Connexionist learning models. PhD Thesis, (1987). [Google Scholar]
- Tong, L., Jinzhen, W., Qing, L. et al., High-Ratio Lossy Compression: Exploring the Autoencoder to Compress Scientific Data. IEEE Transaction on Big Data 9 issue 1, (2021). https://doi.org/10.1109/TBDATA.2021.3066151 [Google Scholar]
- Rossi, F., Battaglieri, M., Ragusa, E. et al., Artificial intelligence data reduction algorithm for streaming readout in high energy physics experiment. Proceeding of ICDATA 24. In pubblication, (2024). [Google Scholar]
- Kathail, V., Xilinx Vitis Unified Software Platform. Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 173-174, (2020). https://doi.org/10.1145/3373087.3375887 [Google Scholar]
- [Available Online], OpenMP for parallel programming in C/C++. https://www.openmp. org/ [Google Scholar]
- [Available Online], Event IO (evio). https://coda.jlab.org/drupal/content/event-io-evio [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

