Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01137
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701137
Published online 07 October 2025
  1. K. Aamodt et al. (ALICE), “The ALICE experiment at the CERN LHC” Journal of Instrumentation 3, S08002 (2008) [Google Scholar]
  2. L. Evans and P. Bryant, “LHC Machine”, Journal of Instrumentation, 3, S08001 (2008) [CrossRef] [Google Scholar]
  3. S. Acharya et al. (ALICE), “The ALICE experiment: a journey through QCD”, European Physical Journal C 84, 813 (2024) [Google Scholar]
  4. G. David, “Direct real photons in relativistic heavy ion collisions”, Reports on Progress in Physics, 83, 046301 (2020) [Google Scholar]
  5. M. Faggin, “Vertexing detectors and vertexing performance in Run 2 in ALICE.” arXiv:2008.13530 [physics.ins-det] (2020) [Google Scholar]
  6. J. Alme et al. (ALICE), “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events.” Nuclear Instruments and Methods in Physics Research Section A, 622, 316-367 (2010) [Google Scholar]
  7. S. Acharya et al. (ALICE), “Direct photon elliptic flow in Pb-Pb collisions at √sNN = 2.76 TeV”, arXiv:1805.04403 [nucl-ex] (2018) [Google Scholar]
  8. V. Pacík et al. (ALICE), “Elliptic flow of identified hadrons in small collisional systems measured with ALICE,” Nuclear Physics A, 982, 451-454, (2019) [Google Scholar]
  9. Ł. K. Graczykowski et al. (ALICE), “Using Machine Learning for Particle Identification in ALICE,” arXiv:2204.06900 [nucl-ex] (2022) [Google Scholar]
  10. K. Koch et al. (ALICE), “π0 and η measurement with photon conversions in ALICE in proton-proton collisions at √s = 7 TeV”, Nuclear Physics A, 855, 281-284 (2011) [Google Scholar]
  11. S. Acharya et al. (ALICE), “Data-driven precision determination of the material budget in ALICE,” Journal of Instrumentation, 18, P11032 (2023) [Google Scholar]
  12. M. M. Aggarwal et al. (WA98 Collaboration), “Observation of Direct Photons in Central 158A GeV Pb208 + Pb208 Collisions,” Phys. Rev. Lett., 85, 3595-3599 (2000) [Google Scholar]
  13. A. Adare et al. (PHENIX Collaboration), “Observation of Direct-Photon Collective Flow in Au+Au Collisions at √sNN = 200 GeV,” Phys. Rev. Lett., 109, 122302 (2012) [CrossRef] [PubMed] [Google Scholar]
  14. J. Adam et al. (ALICE Collaboration), “Direct photon production in Pb–Pb collisions at √sNN = 2.76 TeV,” Phys. Lett. B 754, 235-248 (2016). [CrossRef] [Google Scholar]
  15. STAR Collaboration, “Direct virtual photon production in Au+Au collisions at √sNN = 200 GeV,” Phys. Lett. B 770, 451-458 (2017) [CrossRef] [Google Scholar]
  16. S. Acharya et al. (ALICE), “Direct photon elliptic flow in Pb–Pb collisions at √sNN = 2.76 TeV,” Phys. Lett. B 789, 308-322 (2019) [Google Scholar]
  17. M.C. Danisch, “Direct Photon Production and HBT Correlations in Pb–Pb Collisions at √sNN = 5.02 TeV with the ALICE Experiment,” Acta Phys. Pol. B Proc. Suppl. 16, 1, A122 (2023) [Google Scholar]
  18. T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, arXiv:1603.02754 [cs.LG], 2016, https://github.com/dmlc/xgboost. [Google Scholar]
  19. S.S. Dhaliwal et al., “Effective Intrusion Detection System Using XGBoost,” Information, vol 9, no. 7, p. 149, 2018, https://doi.org/10.3390/info9070149. [Google Scholar]
  20. W. Chang et al., “A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data,” Diagnostics, vol. 9, no. 4, p. 178, 2019, https://doi.org/10.3390/diagnostics9040178. [CrossRef] [PubMed] [Google Scholar]
  21. V. Vatellis, “Advancing Physics Data Analysis through Machine Learning and Physics-Informed Neural Networks,” arXiv:2410.14760 [hep-ph], 2024 [Google Scholar]
  22. R. Brun et al., “Computing in ALICE,” Nucl. Instrum. Methods Phys. Res. A 502, 339-346 (2003), https://github.com/alisw/AliRoot. [Google Scholar]
  23. M. Zimmermann et al. (ALICE), “The ALICE analysis train system,” J. Phys.: Conf. Ser. 608, 012019 (2015) [Google Scholar]
  24. L. Barioglio, et al., “hipe4ml/hipe4ml” Zenodo (2021), https://doi.org/10.5281/zenodo.5070131. [Google Scholar]
  25. T. Akiba, et al. “Optuna: A Next-generation Hyperparameter Optimization Framework.” arXiv preprint arXiv:1907.10902, 2019, https://github.com/optuna/optuna [Google Scholar]
  26. S. M. Lundberg, et al., “A Unified Approach to Interpreting Model Predictions”, arXiv:1705.07874 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.