Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01200
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701200
Published online 07 October 2025
  1. C. Chen et al., Uncertainty-aware Machine Learning for High Energy Physics, SciPost Phys. Codebases 7 (2022). https://doi.org/10.21468/SciPostPhys.7.1.004 [Google Scholar]
  2. G. Cowan et al., The Higgs Boson Machine Learning Challenge, Proceedings of Machine Learning Research, 42, 19 (2014). https://proceedings.mlr.press/v42/cowa14.html [Google Scholar]
  3. S. Amrouche et al., The TrackML Challenge: Accuracy Phase, Comput. Softw. Big Sci. 3, 1 (2019). https://doi.org/10.1007/s41781-019-0028-7 [CrossRef] [Google Scholar]
  4. D. Rousseau et al., The TrackML Challenge: Throughput Phase, Comput. Softw. Big Sci. 4, 6 (2020). https://doi.org/10.1007/s41781-020-00046-5 [Google Scholar]
  5. G. Kasieczka et al., The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics, SciPost Phys. Codebases 5 (2021). https://doi.org/10. 21468/SciPostPhys.5.1.003 [Google Scholar]
  6. NERSC Perlmutter System, https://www.nersc.gov/systems/perlmutter/ [Google Scholar]
  7. I. Guyon et al., Codabench: An Open AI Benchmarking Platform, NeurIPS Competitions Track (2021). https://neurips.cc/Conferences/2021/CompetitionTrack [Google Scholar]
  8. NeurIPS 2024 Competition Track, https://neurips.cc/Conferences/2024/CompetitionTrack [Google Scholar]
  9. FAIR Universe, HiggsML Uncertainty Challenge, https://www.codabench.org/competitions/2977/ [Google Scholar]
  10. B. Nachman et al., Adversarially Learned Inference, Phys. Rev. D 101, 083011 (2020). https://doi.org/10.1103/PhysRevD.101.083011 [NASA ADS] [CrossRef] [Google Scholar]
  11. K. Cranmer, J. Pavez, and G. Louppe, Approximating Likelihood Ratios with Calibrated Discriminative Classifiers, arXiv:1506.02169. [Google Scholar]
  12. P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson, How to Inject Background Knowledge into a Neural Network, arXiv:1604.05400. [Google Scholar]
  13. J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, Constraining Effective Field Theories with Machine Learning, Phys. Rev. Lett. 124, 011801 (2020). https://doi.org/10.1103/PhysRevLett.124.011801 [Google Scholar]
  14. A. Blance, M. Spannowsky, and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10, 047 (2019). https://doi.org/10.1007/JHEP10(2019)047 [Google Scholar]
  15. C. Englert, P. Galler, P. Harris, and M. Spannowsky, Machine Learning Uncertainties with Adversarial Neural Networks, Eur. Phys. J. C 79, 4 (2019). https://doi.org/10.1140/epjc/s10052-018-6511-8 [Google Scholar]
  16. L. Bradshaw, R. Mishra, A. Mitridate, and B. Ostdiek, Mass Agnostic Jet Taggers, SciPost Phys. 8, 011 (2020). https://doi.org/10.21468/SciPostPhys.8.1.011 [Google Scholar]
  17. ATLAS Collaboration, Performance of mass-decorrelated jet substructure observables for hadronic two-body decay tagging in ATLAS, ATL-PHYS-PUB-2018-014 (2018). http://cds.cern.ch/record/2630973 [Google Scholar]
  18. G. Kasieczka and D. Shih, DisCo Fever: Robust Networks Through Distance Correlation, Phys. Rev. Lett. 125, 122001 (2020). https://doi.org/10.1103/PhysRevLett.125. 122001 [Google Scholar]
  19. S. Wunsch, S. Jörger, R. Wolf, and G. Quast, Reducing the dependence of the neural network function to systematic uncertainties in the input space, Comput. Softw. Big Sci. 4, 5 (2020). https://doi.org/10.1007/s41781-020-00037-9 [Google Scholar]
  20. A. Rogozhnikov et al., New approaches for boosting to uniformity, JINST 10, T03002 (2015). https://doi.org/10.1088/1748-0221/10/03/T03002 [Google Scholar]
  21. CMS Collaboration, A deep neural network to search for new long-lived particles decaying to jets, Machine Learning: Science and Technology 1, 035012 (2020). https://doi.org/10.1088/2632-2153/ab9023 [Google Scholar]
  22. V. Estrade, C. Germain, I. Guyon, and D. Rousseau, Systematic aware learning - A case study in High Energy Physics, EPJ Web Conf. 214, 06024 (2019). https://doi.org/10.1051/epjconf/201921406024 [Google Scholar]
  23. A. Ghosh and B. Nachman, A cautionary tale of decorrelating theory uncertainties, Eur. Phys. J. C 82, 46 (2022). https://doi.org/10.1140/epjc/s10052-022-10012-w [Google Scholar]
  24. S. Wunsch et al., Optimal Statistical Inference in the Presence of Systematic Uncertainties Using Neural Network Optimization Based on Binned Poisson Likelihoods with Nuisance Parameters, Comput. Softw. Big Sci. 5, 4 (2021). https://doi.org/10.1007/s41781-020-00049-5 [Google Scholar]
  25. A. Elwood, D. Krücker, and M. Shchedrolosiev, Direct optimization of the discovery significance in machine learning for new physics searches, J. Phys. Conf. Ser. 1525, 012110 (2020). [Google Scholar]
  26. N. Simpson and L. Heinrich, neos: End-to-End-Optimised Summary Statistics for High Energy Physics, J. Phys. Conf. Ser. 2438, 012105 (2023). https://doi.org/10.1088/1742-6596/2438/1/012105 [Google Scholar]
  27. P. Feichtinger et al., Punzi-loss: a non-differentiable metric approximation for sensitivity optimisation, Eur. Phys. J. C 82, 121 (2022). https://doi.org/10.1140/epjc/s10052-022-10070-0 [Google Scholar]
  28. L. Layer, T. Dorigo, and G. Strong, Application of Inferno to a Top Pair Cross Section Measurement with CMS Open Data, arXiv:2301.10358. [Google Scholar]
  29. G. Kasieczka et al., Per-Object Systematics using Deep-Learned Calibration, SciPost Phys. 9, 089 (2020). https://doi.org/10.21468/SciPostPhys.9.6.089 [Google Scholar]
  30. J. Y. Araz and M. Spannowsky, Combine and Conquer: Event Reconstruction with Bayesian Ensemble Neural Networks, JHEP 04, 296 (2021). https://doi.org/10.1007/JHEP04(2021)296 [Google Scholar]
  31. M. Bellagente, M. Haußmann, M. Luchmann, and T. Plehn, Understanding Event-Generation Networks via Uncertainties, arXiv:2104.04543. [Google Scholar]
  32. T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191, 159-177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024 [CrossRef] [Google Scholar]
  33. J. de Favereau et al. [Delphes Collaboration], DELPHES 3: A modular framework for fast simulation of a generic collider experiment, JHEP 02, 057 (2014). https://doi.org/10. 1007/JHEP02(2014)057 [CrossRef] [Google Scholar]
  34. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3, S08003 (2008). https://doi.org/10.1088/1748-0221/3/08/S08003 [Google Scholar]
  35. T. Chen and C. Guestrin, XGBoost: A Scalable Tree Boosting System, CoRR, abs/1603.02754 (2016). http://arxiv.org/abs/1603.02754 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.