Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01203 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701203 | |
| Published online | 07 October 2025 | |
- The LIGO Collaboration and Virgo Collaboration, Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 116, 061102 (2016), https://doi.org/10. 1103/PhysRevLett.116.061102 [CrossRef] [PubMed] [Google Scholar]
- F. Acernese et al., Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32 024001 (2015), https://doi.org/10.1088/0264-9381/32/2/024001 [CrossRef] [Google Scholar]
- The LIGO Scientific Collaboration et al., Advanced LIGO. Class. Quantum Grav. 32 074001 (2015), https://doi.org/10.1088/0264-9381/32/7/074001 [CrossRef] [Google Scholar]
- M. Punturo et al., The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Grav. 27 194002 (2010), https://doi.org/10.1088/0264-9381/27/19/194002 [CrossRef] [Google Scholar]
- M. Evans et al., A Horizon Study for Cosmic Explorer: Science, Observatories, and Community. arXiv:2109.09882 [astro-ph.IM] (2021), https://doi.org/10.48550/arXiv.2109. 09882 [Google Scholar]
- M. Branchesi, Multi-messenger astronomy: gravitational waves, neutrinos, photons, and cosmic rays. J. Phys.: Conf. Ser. 718 022004 (2016), https://doi.org/10.1088/1742-6596/718/2/022004 [CrossRef] [Google Scholar]
- T. Akutsu et al., Overview of KAGRA: Detector design and construction history. Prog. Theor. Exp. Phys., 05A101 (2021), https://doi.org/10.1093/ptep/ptaa125 [Google Scholar]
- B. P. Abbott et al., Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophys. J. 875/2 161 (2019), https://doi.org/10.3847/1538-4357/ab0e8f [CrossRef] [Google Scholar]
- B. P. Abbott et al., A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Class. Quantum Grav. 37 055002 (2020) https://doi.org/10.1088/1361-6382/ab685e [Google Scholar]
- B. P. Abbott et al., Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Class. Quantum Grav. 33 134001 (2016), https://doi.org/10.1088/0264-9381/33/13/134001 [Google Scholar]
- The interTwin website, https://www.intertwin.eu/, accessed: 2024-01-18 [Google Scholar]
- S. Chatterji, et al., Multiresolution techniques for the detection of gravitational-wave bursts. Class. Quant. Grav. 21 S1809-S1818 (2004), https://doi.org/10.1088/0264-9381/21/20/024 [Google Scholar]
- Y. Pidopryhora, et al., interTwin D4.4 First version of the DTs capabilities for High Energy Physics, Radio astronomy and Gravitational-wave Astrophysics. Zenodo (2024), https://doi.org/10.5281/zenodo.11403139 [Google Scholar]
- F. Acernese et al., Virgo detector characterization and data quality: tools. Class. Quant. Grav. 40,18, 185005 (2023), https://doi.org/10.1088/1361-6382/acdf36 [Google Scholar]
- O. Ronneberger et al., U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science 9351:234-241, (2015) http://dx.doi.org/10.1007/978-3-319-24574-4_28 [CrossRef] [Google Scholar]
- Z. Wang, et al., Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process., 13(4) 600-612 (2004) https://doi.org/10.1109/TIP.2003. 819861 [Google Scholar]
- I. Loshchilov and F. Hutter., Decoupled Weight Decay Regularization. International Conference on Learning Representations (ICLR 2019), https://doi.org/10.48550/arXiv. 1711.05101 [Google Scholar]
- GlitchFlow, https://github.com/interTwin-eu/DT-Virgo-notebooks, accessed: 2024-01-18 [Google Scholar]
- The DT Virgo DAGs, https://github.com/interTwin-eu/DT-Virgo-dags/tree/main/Release, accessed: 2024-01-18 [Google Scholar]
- interLink, https://intertwin-eu.github.io/interLink/, accessed: 2024-01-18 [Google Scholar]
- M. Barisits, T. Beermann, F. Berghaus, et al., Rucio: Scientific Data Management. Comput. Softw. Big Sci. 3: 11 (2019), https://doi.org/10.1007/s41781-019-0026-3 [CrossRef] [Google Scholar]
- itwinai, https://github.com/interTwin-eu/itwinai, accessed: 2024-01-18 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

