Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01255 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701255 | |
| Published online | 07 October 2025 | |
- M.D. Schwartz, Modern Machine Learning and Particle Physics, Harvard Data Science Review 3 (2021), https://hdsr.mitpress.mit.edu/pub/xqle7lat. [Google Scholar]
- A. Boehnlein, M. Diefenthaler, N. Sato, M. Schram, V. Ziegler, C. Fanelli, M. Hjorth-Jensen, T. Horn, M.P. Kuchera, D. Lee et al., Colloquium: Machine learning in nuclear physics, Rev. Mod. Phys. 94, 031003 (2022). 10.1103/RevModPhys.94.031003 [CrossRef] [Google Scholar]
- G. Abbiendi et al., Letter of Intent: the MUonE project (2019), https://cds.cern. ch/record/2677471 [Google Scholar]
- G. Abbiendi, G. Ballerini, D. Banerjee, J. Bernhard, M. Bonanomi, C. Brizzolari, L. Foggetta, M. Goncerz, F. Ignatov, M. Incagli et al., A study of muon-electron elastic scattering in a test beam, Journal of Instrumentation 16, P06005 (2021). 10.1088/1748-0221/16/06/P06005 [Google Scholar]
- F.B. Fitch, Warren s. mcculloch and walter pitts. a logical calculus of the ideas immanent in nervous activity. bulletin of mathematical biophysics, vol. 5 (1943), pp. 115-133., Journal of Symbolic Logic 9, 49 (1944). 10.2307/2268029 [Google Scholar]
- A.F. Agarap, Deep learning using rectified linear units (relu) (2019), 1803.08375, https://arxiv.org/abs/1803.08375 [Google Scholar]
- Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, Backpropagation applied to handwritten zip code recognition, Neural Computation 1, 541 (1989). 10.1162/neco.1989.1.4.541 [CrossRef] [Google Scholar]
- A. Boccaletti, S. Borsanyi, M. Davier, Z. Fodor, F. Frech, A. Gerardin, D. Giusti, A.Y. Kotov, L. Lellouch, T. Lippert et al., High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly (2024), 2407.10913, https://arxiv. org/abs/2407.10913 [Google Scholar]
- N. Doble, L. Gatignon, G. von Holtey, F. Novoskoltsev, The upgraded muon beam at the sps, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 343, 351 (1994). https://doi.org/10.1016/0168-9002(94)90212-7 [Google Scholar]
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library (2019), 1912.01703, https://arxiv.org/abs/1912.01703 [Google Scholar]
- M.C. Popescu, V.E. Balas, L. Perescu-Popescu, N. Mastorakis, Multilayer perceptron and neural networks, WSEAS Trans. Cir. and Sys. 8, 579–588 (2009). [Google Scholar]
- M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Commun. ACM 24, 381–395 (1981). 10.1145/358669.358692 [CrossRef] [Google Scholar]
- J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph neural networks: A review of methods and applications (2021), 1812.08434, https://arxiv.org/abs/1812.08434 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

