Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01296
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701296
Published online 07 October 2025
  1. interLink home page, https://intertwin-eu.github.io/interLink/ [Google Scholar]
  2. interTwin EU project, https://www.intertwin.eu/ [Google Scholar]
  3. ICSC National Research Center for High Performance Computing, Big Data, and Quantum Computing, https://www.supercomputing-icsc.it/en/icsc-home/ [Google Scholar]
  4. Tracking ML experiments with MLFlow, https://mlflow.org/ [Google Scholar]
  5. The cloud-native ML platform KubeFlow, https://www.kubeflow.org/ [Google Scholar]
  6. Daniel Fett and Ralf Kuesters and Guido Schmitz - A Comprehensive Formal Security Analysis of OAuth 2.0 - 2016 pre-print arxiv - doi.org/10.48550/arXiv.1601.01229 [Google Scholar]
  7. G. R. Khattak, S. Vallecorsa, F. Carminati and G. M. Khan, “Fast simulation of a high granularity calorimeter by generative adversarial networks,” Eur. Phys. J. C 82 (2022) no.4, 386 doi:10.1140/epjc/s10052-022-10258-4 [arXiv:2109.07388 [physics.ins-det]]. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  8. Pérez, Alfonso and Risco, Sebastián and Naranjo, Diana María and Caballer, Miguel and Moltó, Germán - On-Premises Serverless Computing for Event-Driven Data Processing Applications - 2019 IEEE 12th International Conference on Cloud Computing (CLOUD) - doi.org/10.1109/CLOUD.2019.00073 [Google Scholar]
  9. Apptainer, https://apptainer.org/ [Google Scholar]
  10. EGI Checkin, https://aai.egi.eu/registry/ [Google Scholar]
  11. A. Streit, D. Erwin, T. Lippert, D. Mallmann, R. Menday, M. Rambadt, M. Riedel, M. Romberg, B. Schuller and P. Wieder, - “UNICORE: From project results to production Grids,” - arXiv:cs/0502090. [Google Scholar]
  12. D. Ciangottini, A. Forti, L. Heinrich, N. Skidmore, C. Alpigiani, M. Aly, D. Benjamin, B. Bockelman, L. Bryant and J. Catmore, et al. “Analysis Facilities for the HL-LHC White Paper” Computing and Software for Big Science - 2510-2036 - DOI: 10.1007/s41781-025-00133-8 [Google Scholar]
  13. D. Ciangottini, T. Boccali, A. Ceccanti, D. Spiga, D. Salomoni, T. Tedeschi and M. Tracolli - “First experiences with a portable analysis infrastructure for LHC at INFN,” - EPJ Web Conf. 251 (2021), 02045 doi:10.1051/epjconf/202125102045 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. T. Tedeschi, V. E. Padulano, D. Spiga, D. Ciangottini, M. Tracolli, E. Tejedor Saavedra, E. Guiraud and M. Biasotto, “Prototyping a ROOT-based distributed analysis workflow for HL-LHC: The CMS use case,” Comput. Phys. Commun. 295 (2024), 108965 doi:10.1016/j.cpc.2023.108965 [arXiv:2307.12579 [cs.DC]]. [Google Scholar]
  15. P. Andreetto et al., “Merging OpenStack based private clouds: the case of Cloud-Veneto.it”, Published in: EPJ Web Conf. 214 (2019) 07010, DOI: 10.1051/epjconf/201921407010 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. F. Fanzago et al. - The CloudVeneto’s Container-as-a-Service ecosystem. - To appear in proceedings of CHEP2024 [Google Scholar]
  17. L. Anderlini, M. Barbetti, G. Bianchini, D. Ciangottini, S. Dal Pra, D. Michelotto, C. Pellegrino, R. Petrini, A. Pascolini and D. Spiga - “Supporting the development of Machine Learning for fundamental science in a federated Cloud with the AI_INFN platform,” - arXiv:2502.21266. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.