Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01299
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701299
Published online 07 October 2025
  1. T.A. Collaboration, The ALICE experiment at the CERN LHC, Journal of Instrumentation (2008). 10.1088/1748-0221/3/08/S08002 [Google Scholar]
  2. T.A. Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, Journal of Instrumentation (2008). 10.1088/1748-0221/3/08/S08003 [Google Scholar]
  3. T.C. Collaboration, The CMS experiment at the CERN LHC, Journal of Instrumentation (2008). 10.1088/1748-0221/3/08/S08004 [Google Scholar]
  4. T.L. Collaboration, The LHCb Detector at the LHC, Journal of Instrumentation (2008). 10.1088/1748-0221/3/08/S08005 [Google Scholar]
  5. N. Braun, Combinatorial Kalman filter and high level trigger reconstruction for the Belle II experiment (2019) [Google Scholar]
  6. T.A. collaboration (ATLAS), Tech. rep., CERN (2019) [Google Scholar]
  7. J. Duarte, J.R. Vlimant, Graph Neural Networks for Particle Tracking and Reconstruction (2022) [Google Scholar]
  8. A. Elabd, V. Razavimaleki, S.Y. Huang, J. Duarte, M. Atkinson, et al., Graph neural networks for charged particle tracking on fpgas, Frontiers in Big Data (2022). 10.3389/fdata.2022.828666 [Google Scholar]
  9. M. Mieskolainen, Hypertrack: Neural combinatorics for high energy physics (2023) [Google Scholar]
  10. D. Murnane, S. Thais, A. Thete, Equivariant graph neural networks for charged particle tracking (2023) [Google Scholar]
  11. A. Lazar, X. Ju, D. Murnane, P. Calafiura, S. Farrell, et al., Accelerating the inference of the exa.trkx pipeline, Journal of Physics: Conference Series (2023). 10.1088/1742-6596/2438/1/012008 [Google Scholar]
  12. Lieret, Kilian, DeZoort, Gage, An object condensation pipeline for charged particle tracking at the high luminosity lhc, EPJ Web of Conf. (2024). 10.1051/epjconf/202429509004 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  13. K. Lieret, G. DeZoort, D. Chatterjee, J. Park, S. Miao, P. Li, High pileup particle tracking with object condensation (2023) [Google Scholar]
  14. X. Ju, D. Murnane, P. Calafiura, N. Choma, S. Conlon, et al., Performance of a geometric deep learning pipeline for hl-lhc particle tracking, European Physical Journal C (2021). 10.1140/epjc/s10052-021-09675-8 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  15. X. Ai, C. Allaire, N. Calace, A. Czirkos, I. Ene, et al., A common tracking software project, Computing and Software for Big Science (2022). 10.1007/s41781-021-00078-8 [Google Scholar]
  16. M. Leigh, D. Sengupta, G. Quétant, J.A. Raine, K. Zoch, T. Golling, PC-JeDi: Diffusion for particle cloud generation in high energy physics, SciPost Phys. (2024). 10.21468/SciPostPhys.16.1.018 [Google Scholar]
  17. L. Builtjes, S. Caron, P. Moskvitina, C. Nellist, R.R. de Austri, R. Verheyen, Z. Zhang, Attention to the strengths of physical interactions: Transformer and graph-based event classification for particle physics experiments (2024) [Google Scholar]
  18. S. Caron, J.E.G. Navarro, M.M. Llácer, P. Moskvitina, M. Rovers, A.R. Jímenez, R.R. de Austri, Z. Zhang, Universal anomaly detection at the lhc: Transforming optimal classifiers and the ddd method (2024) [Google Scholar]
  19. S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S. Farrell, et al., The Tracking Machine Learning Challenge: Accuracy Phase, in The NeurIPS ’18 Competition (2020) [Google Scholar]
  20. N. Choma, D. Murnane, X. Ju, P. Calafiura, S. Conlon, et al., Track seeding and labelling with embedded-space graph neural networks (2020) [Google Scholar]
  21. X. Ju, S. Farrell, P. Calafiura, D. Murnane, Prabhat, et al., Graph neural networks for particle reconstruction in high energy physics detectors (2020) [Google Scholar]
  22. A. Heintz, V. Razavimaleki, J. Duarte, G. DeZoort, I. Ojalvo, et al., Accelerated charged particle tracking with graph neural networks on fpgas (2020) [Google Scholar]
  23. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is All You Need, in Proceedings of the 31st International Conference on Neural Information Processing Systems (2017) [Google Scholar]
  24. T. Dao, D. Fu, S. Ermon, A. Rudra, C. Ré, FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, in Advances in Neural Information Processing Systems (2022) [Google Scholar]
  25. R.J.G.B. Campello, D. Moulavi, J. Sander, Density-Based Clustering Based on Hierarchical Density Estimates, in Advances in Knowledge Discovery and Data Mining (2013) [Google Scholar]
  26. U. Odyurt, S.N. Swatman, A.L. Varbanescu, S. Caron, Reduced Simulations for High-Energy Physics, a Middle Ground for Data-Driven Physics Research, in Computational Science – ICCS 2024 (2024) [Google Scholar]
  27. Kiehn, Moritz, Amrouche, Sabrina, Calafiura, Paolo, Estrade, Victor, Farrell, Steven, et al., The trackml high-energy physics tracking challenge on kaggle, EPJ Web Conf. (2019). 10.1051/epjconf/201921406037 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.