Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01313
Number of page(s) 9
DOI https://doi.org/10.1051/epjconf/202533701313
Published online 07 October 2025
  1. CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004 [Google Scholar]
  2. CMS Collaboration, CMS Technical Design Report CMS-TDR-014, CERN (2017), https://cds.cern.ch/record/2272264 [Google Scholar]
  3. CMS Offline Software and Computing, CMS Note CMS-NOTE-2022-008, CERN (2022), https://cds.cern.ch/record/2815292 [Google Scholar]
  4. D.J. Lange, M. Hildreth, V.N. Ivantchenko, I. Osborne (CMS), Upgrades for the CMS simulation, J. Phys. Conf. Ser. 608, 012056 (2015). 10.1088/1742-6596/608/1/012056 [Google Scholar]
  5. M. Hildreth, V.N. Ivanchenko, D.J. Lange (CMS), Upgrades for the CMS simulation, J. Phys. Conf. Ser. 898, 042040 (2017). 10.1088/1742-6596/898/4/042040 [Google Scholar]
  6. S. Agostinelli et al., Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8 [CrossRef] [Google Scholar]
  7. J. Allison et al., Recent developments in Geant4, Nucl. Instrum. Meth. A 835, 186 (2016). 10.1016/j.nima.2016.06.125 [CrossRef] [Google Scholar]
  8. S. Abdullin, P. Azzi, F. Beaudette, P. Janot, A. Perrotta, The fast simulation of the CMS detector at LHC, J. Phys. Conf. Ser. 331, 032049 (2011). 10.1088/1742-6596/331/3/032049 [CrossRef] [Google Scholar]
  9. A. Giammanco, The fast simulation of the CMS experiment, J. Phys. Conf. Ser. 513, 022012 (2014). 10.1088/1742-6596/513/2/022012 [CrossRef] [Google Scholar]
  10. S. Sekmen (CMS), Recent developments in CMS fast simulation, PoS ICHEP2016, 181 (2016), 1701.03850. 10.22323/1.282.0181 [Google Scholar]
  11. G. Grindhammer, M. Rudowicz, S. Peters, The Fast Simulation of Electromagnetic and Hadronic Showers, Nucl. Instrum. Meth. A 290, 469 (1990). 10.1016/0168-9002(90)90566-O [Google Scholar]
  12. M. Wolf, L.O. Stietz, P.L.S. Connor, P. Schleper, S. Bein, Fast Perfekt: Regressionbased refinement of fast simulation, SciPost Phys. Core 8, 021 (2025), 2410.15992. 10.21468/SciPostPhysCore.8.1.021 [Google Scholar]
  13. S. Bein, P. Connor, K. Pedro, P. Schleper, M. Wolf (CMS), Refining fast simulation using machine learning, EPJ Web Conf. 295, 09032 (2024), 2309.12919. 10.1051/epjconf/202429509032 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  14. D. Alves (LHC New Physics Working Group), Simplified Models for LHC New Physics Searches, J. Phys. G 39, 105005 (2012), 1105.2838. 10.1088/0954-3899/39/10/105005 [CrossRef] [Google Scholar]
  15. C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost Phys. Codeb. 2022, 8 (2022), 2203.11601. 10.21468/SciPostPhysCodeb.8 [CrossRef] [Google Scholar]
  16. M. Cacciari, G.P. Salam, G. Soyez, The anti-kT jet clustering algorithm, JHEP 04, 063 (2008), 0802.1189. 10.1088/1126-6708/2008/04/063 [CrossRef] [Google Scholar]
  17. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual, Eur. Phys. J. C 72, 1896 (2012), 1111.6097. 10.1140/epjc/s10052-012-1896-2 [CrossRef] [Google Scholar]
  18. D. Bertolini, P. Harris, M. Low, N. Tran, Pileup per particle identification, JHEP 10, 059 (2014), 1407.6013. 10.1007/JHEP10(2014)059 [Google Scholar]
  19. A.M. Sirunyan et al. (CMS), Pileup mitigation at CMS in 13 TeV data, JINST 15, P09018 (2020), 2003.00503. 10.1088/1748-0221/15/09/p09018 [Google Scholar]
  20. E. Bols, J. Kieseler, M. Verzetti, M. Stoye, A. Stakia, Jet flavour classification using deepjet, JINST 15, P12012 (2020). 10.1088/1748-0221/15/12/P12012 [CrossRef] [Google Scholar]
  21. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in IEEE CVPR (2016), p. 770 [Google Scholar]
  22. A.M. Sirunyan et al. (CMS), Perform ance of missing transverse momentum reconstruction in proton-proton collisions at √s = 13 TeV using the CMS detector, JINST 14, P07004 (2019), 1903.06078. 10.1088/1748-0221/14/07/P07004 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.