Issue |
EPJ Web of Conferences
Volume 26, 2012
DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 01056 | |
Number of page(s) | 6 | |
Section | Experimental Techniques | |
DOI | https://doi.org/10.1051/epjconf/20122601056 | |
Published online | 31 August 2012 |
https://doi.org/10.1051/epjconf/20122601056
Dynamic impact response of high-density square honeycombs made of TRIP steel and TRIP matrix composite material
1 Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
2 Institute of Materials Science, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
3 Institute of Ceramic, Glass and Construction Materials, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
Two designs of square-celled metallic honeycomb structures fabricated by a modified extrusion technology based on a powder feedstock were investigated. The strength and ductility of these cellular materials are achieved by an austenitic CrNi (AISI 304) steel matrix particle reinforced by an MgO partially-stabilized zirconia building up their cell wall microstructure. Similar to the mechanical behaviour of the bulk materials, the strengthening mechanism and the martensitic phase transformations in the cell walls are affected by the deformation temperature and the nominal strain rate. The microstructure evolution during quasi-static and dynamic impact compression up to high strain rates of 103 1/s influences the buckling and failure behaviour of the honeycomb structures. In contrast to bending-dominated quasi-isotropic networks like open-celled metal foams, axial compressive loading to the honeycomb’s channels causes membrane stretching as well as crushing of the vertical cell node elements and cell walls. The presented honeycomb materials differ geometrically in their cell wall thickness-to-cell size-ratio. Therefore, the failure behaviour is predominantly controlled by global buckling and torsional-flexural buckling, respectively, accompanied by plastic matrix flow and strengthening of the cell wall microstructure.
© Owned by the authors, published by EDP Sciences, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.