Issue |
EPJ Web Conf.
Volume 183, 2018
DYMAT 2018 - 12th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 03014 | |
Number of page(s) | 6 | |
Section | Microstructural Effects | |
DOI | https://doi.org/10.1051/epjconf/201818303014 | |
Published online | 07 September 2018 |
https://doi.org/10.1051/epjconf/201818303014
Mechanical properties of high-density TRIP steel honeycomb structures with varying cell profiles under different loading conditions
1
Institute of Materials Engineering, TU Bergakademie Freiberg,
09599
Freiberg,
Germany
2
Institute of Ceramic, Glass and Construction Materials, TU Bergakademie Freiberg,
09599
Freiberg,
Germany
* Christine Baumgart: christine.baumgart@iwt.tu-freiberg.de
Published online: 7 September 2018
As the mechanical properties of honeycomb structures are influenced by several parameters, detailed analysis is necessary before their potential application in transportation industry components. Previous Finite Element Model (FEM)-based numerical analysis demonstrated that variation in cell geometry affects the achievable strength level and, thus, the energy absorption capability. According to this FEM study, the Kagome geometry – an ordered sequence of hexagons and triangles – exhibits properties that are particularly promising when compared to the square-celled structures investigated to date. When the load is applied parallel to the channel axis (the out-of-plane direction), the increment of strength is comparatively low, whereas in the in-plane direction (loading orthogonal to the channel axis), the dissipated specific energy can reach almost double that of the square-celled structure. In this study, the results of static and dynamic compression tests – performed in the out-of-plane and in-plane modes – are presented to examine the influence of strain rate and loading direction on the characteristic deformation stages of squarecelled and Kagome structures. Particular attention is paid to deformation induced martensite formation in the cell wall material, indicating the TRansformation Induced Plasticity (TRIP) effect as a function of applied cell geometry, strain rate and loading direction.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.