Issue |
EPJ Web Conf.
Volume 135, 2017
7th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2016)
|
|
---|---|---|
Article Number | 01005 | |
Number of page(s) | 4 | |
Section | Radio Detection of Extensive Air Showers | |
DOI | https://doi.org/10.1051/epjconf/201713501005 | |
Published online | 15 March 2017 |
https://doi.org/10.1051/epjconf/201713501005
Towards a cosmic-ray mass-composition study at Tunka Radio Extension
1 Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Institute of Applied Physics, Irkutsk State University (ISU), Irkutsk, Russia
3 Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Germany
4 Skobeltsyn Institute of Nuclear Physics, Lomonossov University (MSU), Moscow, Russia
5 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
6 Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany
* e-mail: dmitriy.kostunin@kit.edu
Published online: 15 March 2017
The Tunka Radio Extension (Tunka-Rex) is a radio detector at the TAIGA facility located in Siberia nearby the southern tip of Lake Baikal. Tunka-Rex measures air-showers induced by high-energy cosmic rays, in particular, the lateral distribution of the radio pulses. The depth of the air-shower maximum, statistically depends on the mass of the primary particle, is determined from the slope of the lateral distribution function (LDF). Using a model-independent approach, we have studied possible features of the one-dimensional slope method and tried to find improvements for the reconstruction of primary mass. To study the systematic uncertainties given by different primary particles, we have performed simulations using the CONEX and CoREAS software packages of the recently released CORSIKA v7.5 including the modern high-energy hadronic models QGSJet-II.04 and EPOS-LHC. The simulations have shown that the largest systematic uncertainty in the energy deposit is due to the unknown primary particle. Finally, we studied the relation between the polarization and the asymmetry of the LDF.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.