Issue |
EPJ Web Conf.
Volume 135, 2017
7th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2016)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 6 | |
Section | Radio Detection of Extensive Air Showers | |
DOI | https://doi.org/10.1051/epjconf/201713501001 | |
Published online | 15 March 2017 |
https://doi.org/10.1051/epjconf/201713501001
Status of air-shower measurements with sparse radio arrays
Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany
* e-mail: frank.schroeder@kit.edu
Published online: 15 March 2017
This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.