Issue |
EPJ Web Conf.
Volume 135, 2017
7th International Conference on Acoustic and Radio EeV Neutrino Detection Activities (ARENA 2016)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 4 | |
Section | Radio Detection of Extensive Air Showers | |
DOI | https://doi.org/10.1051/epjconf/201713501003 | |
Published online | 15 March 2017 |
https://doi.org/10.1051/epjconf/201713501003
Tunka-Rex: Status, Plans, and Recent Results
1 Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2 Institute of Applied Physics, Irkutsk State University (ISU), Irkutsk, Russia
3 Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Germany
4 Skobeltsyn Institute of Nuclear Physics, Lomonossov University (MSU), Moscow, Russia
5 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
6 Deutsches Elektronen-Synchrotron (DESY), Zeuthen, Germany
* e-mail: frank.schroeder@kit.edu
Published online: 15 March 2017
Tunka-Rex, the Tunka Radio extension at the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Siberia, has recently been expanded to a total number of 63 SALLA antennas, most of them distributed on an area of one square kilometer. In the first years of operation, Tunka-Rex was solely triggered by the co-located air-Cherenkov array Tunka-133. The correlation of the measurements by both detectors has provided direct experimental proof that radio arrays can measure the position of the shower maximum. The precision achieved so far is 40 g/cm2, and several methodical improvements are under study. Moreover, the cross-comparison of Tunka-Rex and Tunka-133 shows that the energy reconstruction of Tunka-Rex is precise to 15 %, with a total accuracy of 20 % including the absolute energy scale. By using exactly the same calibration source for Tunka-Rex and LOPES, the energy scale of their host experiments, Tunka-133 and KASCADE-Grande, respectively, can be compared even more accurately with a remaining uncertainty of about 10 %. The main goal of Tunka-Rex for the next years is a study of the cosmic-ray mass composition in the energy range above 100 PeV: For this purpose, Tunka-Rex now is triggered also during daytime by the particle detector array Tunka-Grande featuring surface and underground scintillators for electron and muon detection.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.