Issue |
EPJ Web of Conferences
Volume 5, 2010
API'09 - First NanoCharM Workshop on Advanced Polarimetric Instrumentation
|
|
---|---|---|
Article Number | 04008 | |
Number of page(s) | 1 | |
Section | Mueller matrix algebra and data analysis | |
DOI | https://doi.org/10.1051/epjconf/20100504008 | |
Published online | 02 June 2010 |
https://doi.org/10.1051/epjconf/20100504008
On the noise and physical realizability of experimental polarimetric images
LSIIT, Université de Strasbourg, 67412, Illkirch, France
Optical polarimetric images are usually calculated from a set of intensity images recorded with different states of polarization of light [1] . Be cause these latter states are setup dependent, propagation of experimental noise to polarimetric images is governed by the architecture of the polarimeter. In the case of Mueller polarimeter with rotating wave plates, polarimetric noise is distributed according to a scheme that involves 4 uncorrelated blocks of 2x2 adjacent matrices, each matrix containing 4 correlated elements [2]. When minimal 4x4=16 intensity images are used to extract Mueller images, the 4 elements in the middle m22, m23, m 32, m 33 feature variances that are 4 times higher than the variance of the intensity measurements. These highest polarimetric variances only equalize the intensity variance when 8x8= 64 intensity images are used for assessment. Polarimetric accuracy referred to as “physicalr ealizability” of Mueller images can be checked on the spectrum of a particular 4x4 real matrix built with the Minkowski space tensor G=diag([1 1 1 1]) together with the Mueller matrix M [3]. Because the defined estimator has undesirable statistical properties such as an unfavorable bias, any test on Mueller images of non depolarizing samples would lead to negative results almost all the time. A correct checking procedure would be to take into account the previously exhibited properties of polarimetric noise. This is formally equivalent for overpolarizing tests, to consider a correctly computed shifted ellipsoid rather than the usual centered sphere [4].
© Owned by the authors, published by EDP Sciences, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.