Issue |
EPJ Web of Conferences
Volume 5, 2010
API'09 - First NanoCharM Workshop on Advanced Polarimetric Instrumentation
|
|
---|---|---|
Article Number | 04009 | |
Number of page(s) | 2 | |
Section | Mueller matrix algebra and data analysis | |
DOI | https://doi.org/10.1051/epjconf/20100504009 | |
Published online | 02 June 2010 |
https://doi.org/10.1051/epjconf/20100504009
Imaging polarimetry in the LWIR with microgrid polarimeters
College of Optical Sciences, University of
Arizona, Tucson, AZ
85721, USA
Microgrid polarimeters have emerged over the past decade as a viable tool for performing real-time, highly accurate polarimetric imagery. A microgrid polarimeter operates by integrating a focal plane array (FPA) with an array of micropolarizing optics. Mircrogrids have the advantage of being relatively compact, rugged, and inherently spatiotemporally aligned. However, they have the single disadvantage that the various polarization measurements that go into estimating the Stokes parameters at a particular pixel are actually coming from separate locations in the field. Hence, a microgrid polarimeter performs best where there is no image information, obviating the need for an imaging polarimeter! Recently we have been working with a LWIR microgrid polarimeter at the College of Optical Sciences. Our instrument is a DRS Sensors & Targeting Systems 640 x 480 HgCdTe FPA with linear polarizers at 0°, 45°, 90°, and 135° [1]. In this paper we will review our recent results that derive methods for artifact-free reconstruction of band limited imagery.
© Owned by the authors, published by EDP Sciences, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.