Issue |
EPJ Web of Conferences
Volume 6, 2010
ICEM 14 – 14th International Conference on Experimental Mechanics
|
|
---|---|---|
Article Number | 22010 | |
Number of page(s) | 8 | |
Section | Soils and Geomaterials | |
DOI | https://doi.org/10.1051/epjconf/20100622010 | |
Published online | 10 June 2010 |
https://doi.org/10.1051/epjconf/20100622010
Advanced acoustic emission analysis of brittle and porous rock fracturing
GFZ German Research Centre for Geosciences, Telegrafenberg
D423, 14473
Potsdam,
Germany
a e-mail : stanch@gfz-potsdam.de
Analysis of Acoustic Emission (AE) induced during brittle and porous rock fracturing at variety of loading conditions has been performed. On the base of advanced analysis of AE parameters, ultrasonic velocities and mechanical data we found that regardless of applied loading conditions the process of rock fracture can be separated into two main stages: (A) accumulation of non-correlated cracks localized almost randomly in the whole volume of uniformly stressed rock. (B) Final stage of sample fracturing could be characterized by appearance of AE nucleation site followed by initiation and propagation of the macroscopic fault. Contribution of tensile sources is reduced significantly, shear type and pore collapse type events dominate during propagation of a fracture process zone through the sample regardless of applied loading conditions. In the case of porous rock, nucleation of compaction bands could be clearly identified by the appearance of AE clusters inside the samples. Microstructural analysis of fractured samples shows excellent agreement between location of AE hypocenters and faults or the positions of compaction bands, confirming that advanced AE analysis is a powerful tool for the process of rock fracture investigation.
© Owned by the authors, published by EDP Sciences, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.