Issue |
EPJ Web of Conferences
Volume 41, 2013
XVIIIth International Conference on Ultrafast Phenomena
|
|
---|---|---|
Article Number | 07006 | |
Number of page(s) | 3 | |
Section | Biological Systems | |
DOI | https://doi.org/10.1051/epjconf/20134107006 | |
Published online | 13 March 2013 |
https://doi.org/10.1051/epjconf/20134107006
Ultrafast dynamics and Raman imaging of metal complexes of tetrasulphonated phthalocyanines in human cancerous and noncancerous breast tissues
1 Lodz University of Technology, Laboratory of Laser Molecular Spectroscopy, 93-590 Lodz, Poland
2 Université Bordeaux 1, Laboratoire Ondes et Matière d’Aquitaine (LOMA), UMR-CNRS 5798, 351 Cours de la Libération 33405 Talence Cedex, France
3 Medical University of Lodz, Department of Pathology, Chair of Oncology, Paderewskiego 4, 93-509 Lodz, Poland
A promising material in medicine, electronics, optoelectronics, electrochemistry, catalysis and photophysics, Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) is investigated at biological interfaces of human breast tissue by means of time-resolved spectroscopy. The nature of fast processes and pathways of the competing relaxation mechanisms from the initially excited electronic states of a photosensitizer at biological interfaces have been studied. Comparison between the results in the biological environment of the breast tissues and in aqueous solutions demonstrates that the photochemical mechanisms become dramatically different. The presented results provide a basis for a substantial revision of the commonly accepted assumption that photochemistry of the bulk properties of photosensitizers in solutions can be translated to the interfacial region. First, in solution the dynamics of the photosensitizer is much slower than that at the biological interface. Second, the dynamics of the photosensitizer in the cancerous tissue is dramatically slower than that in noncancerous tissue. Our results provide evidence that molecular structures responsible for harvesting of the light energy in biological tissue find their ways for a recovery through some special features of the potential energy surfaces such as conical intersections, which facilitate the rate of radiationless transitions and maintain the photostability in the biological systems.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.