Issue |
EPJ Web of Conferences
Volume 45, 2013
EFM12 – Experimental Fluid Mechanics 2012
|
|
---|---|---|
Article Number | 01092 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/epjconf/20134501092 | |
Published online | 09 April 2013 |
https://doi.org/10.1051/epjconf/20134501092
Oscillations of bubbles attached to a capillary: case of pure liquid
Institute of Chemical Process Fundamentals, Rozvojova 135, 165 02, Prague, Czech Republic
An oscillating bubble attached to a tip of a capillary is used for probing interfacial properties of liquids containing surface-active agents. Nevertheless, available theories even for the case of pure liquid are not satisfactory. In this contribution, we therefore present results of a linear inviscid theory for shape oscillations of a spherical bubble, which is in contact with a solid support. The theory allows determining eigenmodes (i.e. eigenfrequencies, eigenmode shapes and damping of eigenmode oscillations), but also response of the bubble shape to a motion of its support or to volume variations. Present theory covers also the cases previously analyzed by Strani and Sabetta (J. Fluid Mech., 1984) and Bostwick and Steen (Phys. Fluids, 2009), and it can be applied to both bubbles and drops. The theory has been compared to experiments. Good agreement is found for the case of small bubbles, which have spherical static shape. Experimental results for larger bubbles and drops deviate from the theory, if a neck is formed. It is shown that this deviation correlates well with a ratio of bubble volume to the maximum volume, when a detachment occurs.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.