Issue |
EPJ Web of Conferences
Volume 45, 2013
EFM12 – Experimental Fluid Mechanics 2012
|
|
---|---|---|
Article Number | 01093 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjconf/20134501093 | |
Published online | 09 April 2013 |
https://doi.org/10.1051/epjconf/20134501093
Combined study of evaporation from liquid surface by background oriented schlieren, infrared thermal imaging and numerical simulation
Lomonosov Moscow State University, Faculty of Physics, Leninskiye Gory, 1/2, 119991, Moscow, Russia
a e-mail: nickvinn@yandex.ru
Temperature fields in evaporating liquids are measured by simultaneous use of Background Oriented Schlieren (BOS) technique for the side view and IR thermal imaging for the surface distribution. Good agreement between the two methods is obtained with typical measurement error less than 0.1 K. Two configurations of surface layer are observed: thermocapillary convection state with moving liquid surface and small thermal cells, associated with Marangoni convection, and “cool skin” with negligible velocity at the surface, larger cells and dramatic increase of velocity within 0.1 mm layer beneath the surface. These configurations are shown to be formed in various liquids (water with various degrees of purification, ethanol, butanol, decane, kerosene, glycerine) depending rather on initial conditions and ambient parameters than on the liquid. Water, which has been considered as the liquid without observable Marangoni convection, actually can exhibit both kinds of behavior during the same experimental run. Evaporation is also studied by means of numerical simulations. Separate problemsin air and liquid are considered, with thermal imaging data of surface temperature making the separation possible. It is shown that evaporation rate can be predicted by numerical simulation of the air side with appropriate boundary conditions. Comparison is made with known empirical correlations for Sherwood-Rayleigh relationship. Numerical simulations of water-side problem reveal the issue of velocity boundary conditions at the free surface, determining the structure of surface layer. Flow field similar to observed in the experiments is obtained with special boundary conditions of third kind, presenting a combination of no-slip and surface tension boundary conditions.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.