Issue |
EPJ Web of Conferences
Volume 45, 2013
EFM12 – Experimental Fluid Mechanics 2012
|
|
---|---|---|
Article Number | 01099 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/epjconf/20134501099 | |
Published online | 09 April 2013 |
https://doi.org/10.1051/epjconf/20134501099
Flow Visualization of a Scramjet Inlet – Isolator Model in Supersonic Flow
1 Graduate Student, Dept. of Astronautical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
2 Asst Prof., Dept. of Astronautical Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
Understanding the physical mechanisms and having insight to the complex flowfield involving unstart phenomena in supersonic inlets has gained considerable attention especially in the area of scramjet inlet/isolator aerothermodynamics. In this study, Schlieren visualization and computational analysis of shock wave structures in ramjet/scramjet inlet/isolator models in supersonic flow have been performed. Experiments were performed in the supersonic wind tunnel at the Trisonic Research Laboratory in Istanbul Technical University. The test section floor and the existing mechanism underneath have been modified to be able to mount the designed inlet/isolator model on the floor of the test section. The inlet/isolator model with a 12- degree compression ramp is investigated at Mach 2 both computationally and experimentally. Computations were performed using Star-CCM+ software to investigate shock wave structures in and around the three dimensional inlet/isolator model as mounted on the test section floor as a guide for designing the experimental model. In the results, the effects of shock wave – boundary layer interactions with flow separations with were observed. Ensemble average of the density distributions on a series of planes from one side wall to the other from the CFD results agreed well with the Schlieren images obtained experimentally. The structure of the shock waves and angles obtained from the Schlieren images agree quite well with those obtained from the CFD results. The effects of lambda-shock formations which indicate possible boundary layer separations, reflections of shock waves, and shock wave – boundary layer interactions on inlet unstart phenomena have been discussed. In order to investigate inlet unstart mechanism further, different experimental setups have been suggested for future work.
© Owned by the authors, published by EDP Sciences, 2013
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.