Issue |
EPJ Web of Conferences
Volume 67, 2014
EFM13 – Experimental Fluid Mechanics 2013
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 10 | |
Section | Keynote Lectures | |
DOI | https://doi.org/10.1051/epjconf/20146701001 | |
Published online | 25 March 2014 |
https://doi.org/10.1051/epjconf/20146701001
High Dynamic Range Particle Image Velocimetry Applied to Heat Convection Studies
Department of Mechanical & Manufacturing Engineering, Parsons Building, Trinity College, Dublin 2, Ireland
a Corresponding author: tim.persoons@tcd.ie
Published online: 25 March 2014
Convective heat transfer occurs in a wide range of engineering applications, from nuclear reactors to portable electronic devices. Accurate whole-field turbulence and flow measurements are crucial to understanding convective heat transfer in complex flow fields, thereby enabling optimal design of these devices. Particle image velocimetry (PIV) is the preferred whole-field flow measurement technique. However in many configurations the dynamic velocity range of conventional PIV is too limited to accurately resolve both high mean velocities and turbulence intensities in lower velocity regions. This paper employs high dynamic range (HDR) PIV with an advanced acquisition and processing technique based on multiple pulse separation (MPS) double-frame imaging. The methodology uses a conventional adaptive multi-grid algorithm for vector evaluation, and determines the optimal pulse separation in space and time in a post-processing routine. Two test cases are discussed: For an impinging synthetic jet flow (Case I), HDR PIV increases the dynamic velocity range 25-fold compared to conventional PIV. For an oscillatory buoyant plume from a pair of horizontal heated cylinders (Case II), the dynamic velocity range is increased 5.5 times. This technique has yielded new insights in synthetic jet heat transfer by correlating local surface heat transfer rates to near-wall turbulence intensity in a single whole-field measurement.
© Owned by the authors, published by EDP Sciences, 2014
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.