Issue |
EPJ Web of Conferences
Volume 94, 2015
DYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 5 | |
Section | Microstructural Effects | |
DOI | https://doi.org/10.1051/epjconf/20159402001 | |
Published online | 07 September 2015 |
https://doi.org/10.1051/epjconf/20159402001
Mechanism of grain refinement and its effect on Adiabatic Shear Bands in 4340 steel and pure copper during impact
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada, R3T5V6
a Corresponding author: author@email.org
Published online: 7 September 2015
Pre-deformation and post-deformation microstructure characterization was conducted on tempered 4340 steel and commercial pure copper specimens under impact to determine the microstructural changes and the mechanism of grain refinement that occur during the evolution of ASBs. It was observed that the movement and multiplication of dislocations, elongation of grains, breaking of elongated grains, rotation, carbide fragmentation and boundary refinement of broken grains occur simultaneously during the evolution of ASBs in the impacted 4340 steel specimens. The extent of these mechanisms depends on the imposed local strain and strain rate. Extensive grain refinement coupled with high density of dislocations results in the shear band structures being more susceptible to crack nucleation and propagation. In copper, it was observed that sequential occurrence of emergence of dislocations, dislocation cell formations with varying cell boundaries and cell interiors, dynamic recovery and extensive micro-twinning results in the formation of the shear bands. The structure within the evolved shear bands becomes less brittle after the onset of dynamic recovery and micro-twinning. The differences in the mechanism of grain refinement and evolution of the shear bands in both materials is attributed to the differences in the mobility of dislocations, the rate of strain hardening and strain hardening exponents in both materials studied.
© Owned by the authors, published by EDP Sciences, 2015
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.